Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R299-R308, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35107024

ABSTRACT

Prepubertal obesity (PPO) has emerged as a major health problem over the past few decades and is a risk factor for the development of proteinuria. The current study investigated whether the development of renal injury in the obese SSLepR mutant strain occurs before puberty. When determining the temporal changes in serum sex hormones in female and male SS and SSLepR mutant rats between 4 and 10 wk of age, we only observed significant increases in estradiol and testosterone levels in female and male SS rats at 10 wk of age than at 4 wk of age. The results suggest that studying both strains between 4 and 8 wk of age is appropriate to study the effects of PPO on renal injury in this model. Proteinuria was significantly higher in SSLepR mutant rats as opposed to the values observed in SS rats at 8 wk of age, and we did not observe any sex differences in proteinuria in either strain. The kidneys from the SSLepR mutant rats displayed significant glomerular and tubular injury and renal fibrosis versus the values measured in SS rats without any sex differences. Overall, we observed increased immune cell infiltration in the kidneys from SSLepR mutant rats compared with SS rats. Interestingly, female SSLepR mutant rats displayed significant increases in not only M1 macrophages (proinflammatory) but also M2 macrophages (anti-inflammatory) versus male SSLepR mutant rats. These results suggest the SSLepR mutant rat may be a useful model to study early progression of obesity-related renal injury before the onset of puberty.


Subject(s)
Kidney Diseases , Kidney , Animals , Female , Humans , Kidney Diseases/genetics , Male , Obesity/complications , Obesity/genetics , Proteinuria/genetics , Puberty , Rats
2.
Am J Physiol Heart Circ Physiol ; 322(2): H246-H259, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34951541

ABSTRACT

Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.


Subject(s)
Dementia, Vascular/drug therapy , Diabetic Angiopathies/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sorbitol/analogs & derivatives , Animals , Arterioles/drug effects , Arterioles/physiopathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiopathology , Cells, Cultured , Cerebrovascular Circulation , Cognition , Male , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/physiopathology , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sorbitol/pharmacology , Sorbitol/therapeutic use
3.
J Pharmacol Exp Ther ; 376(2): 240-249, 2021 02.
Article in English | MEDLINE | ID: mdl-33277348

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive lipid mediator that has been implicated in the pathophysiology of kidney disease. However, few studies have attempted to measure changes in the levels of various LPA species in the kidney after the development of renal disease. The present study measured the renal LPA levels during the development of kidney disease in rat models of hypertension, diabetes, and obstructive nephropathy using liquid chromatography/mass spectrometry/mass spectrometry. LPA levels (sum of 16:0, 18:0, 18:1, 18:2, and 20:4 LPA) were higher in the renal cortex of hypertensive Dahl salt-sensitive (Dahl S) rats fed a high-salt diet than those in normotensive rats fed a low-salt diet (296.6 ± 22.9 vs. 196.3 ± 8.5 nmol/g protein). LPA levels were elevated in the outer medulla of the kidney of streptozotocin-induced type 1 diabetic Dahl S rats compared with control rats (624.6 ± 129.5 vs. 318.8 ± 17.1 nmol/g protein). LPA levels were also higher in the renal cortex of 18-month-old, type 2 diabetic nephropathy (T2DN) rats with more severe renal injury than in 6-month-old T2DN rats (184.9 ± 20.9 vs. 116.9 ± 6.0 nmol/g protein). LPA levels also paralleled the progression of renal fibrosis in the renal cortex of Sprague-Dawley rats after unilateral ureteral obstruction (UUO). Administration of an LPA receptor antagonist, Ki16425, reduced the degree of renal fibrosis in UUO rats. These results suggest that the production of renal LPA increases during the development of renal injury and contributes to renal fibrosis. SIGNIFICANCE STATEMENT: The present study reveals that the lysophosphatidic acid (LPA) levels increase in the kidney in rat models of hypertension, diabetes, and obstructive nephropathy, and administration of an LPA receptor antagonist attenuates renal fibrosis. Therapeutic approaches that target the formation or actions of renal LPA might be renoprotective and have therapeutic potential.


Subject(s)
Diabetic Nephropathies/metabolism , Hypertension, Renal/metabolism , Lysophospholipids/metabolism , Animals , Diabetic Nephropathies/pathology , Fibrosis , Hypertension, Renal/pathology , Isoxazoles/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lysophospholipids/antagonists & inhibitors , Male , Propionates/pharmacology , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley
4.
RNA Biol ; 13(10): 955-972, 2016 10 02.
Article in English | MEDLINE | ID: mdl-27419845

ABSTRACT

Many cellular functions, such as translation, require ribonucleoproteins (RNPs). The biogenesis of RNPs is a multi-step process that, depending on the RNP, can take place in many cellular compartments. Here we examine 2 different RNPs: telomerase and small Cajal body-specific RNPs (scaRNPs). Both of these RNPs are enriched in the Cajal body (CB), which is a subnuclear domain that also has high concentrations of another RNP, small nuclear RNPs (snRNPs). SnRNPs are essential components of the spliceosome, and scaRNPs modify the snRNA component of the snRNP. The CB contains many proteins, including WRAP53, SMN and coilin, the CB marker protein. We show here that coilin, SMN and coilp1, a newly identified protein encoded by a pseudogene in human, associate with telomerase RNA and a subset of scaRNAs. We also have identified a processing element within box C/D scaRNA. Our findings thus further strengthen the connection between the CB proteins coilin and SMN in the biogenesis of telomeras e and box C/D scaRNPs, and reveal a new player, coilp1, that likely participates in this process.


Subject(s)
Coiled Bodies/genetics , Nuclear Proteins/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Survival of Motor Neuron 1 Protein/metabolism , Telomerase/genetics , Animals , Coiled Bodies/metabolism , HeLa Cells , Humans , Mice , Nuclear Proteins/genetics , Protein Binding , Pseudogenes , Ribonucleoproteins, Small Nuclear/metabolism , Survival of Motor Neuron 1 Protein/genetics , Telomerase/metabolism
5.
PLoS One ; 9(11): e112878, 2014.
Article in English | MEDLINE | ID: mdl-25397684

ABSTRACT

We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5) were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO) rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2), were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats.


Subject(s)
Cerebrovascular Circulation/physiology , Dual-Specificity Phosphatases/genetics , Gene Expression Regulation/genetics , Muscle Development/physiology , Analysis of Variance , Animals , Blotting, Western , Cerebrovascular Circulation/genetics , Codon, Nonsense/genetics , DNA Primers , Dual-Specificity Phosphatases/metabolism , Gene Knockout Techniques , Middle Cerebral Artery/anatomy & histology , Muscle Development/genetics , Perfusion , Pressure , Rats , Rats, Mutant Strains , Real-Time Polymerase Chain Reaction
6.
Prostaglandins Other Lipid Mediat ; 113-115: 45-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25151892

ABSTRACT

Previous studies have indicated that cytochrome P450 (CYP) metabolites of arachidonic acid (AA), i.e., 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs), play an important role in the regulation of renal tubular and vascular function. The present study for the first time profiled HETEs and epoxygenase derived dihydroxyeicosatetraenoic acid diHETEs levels in spot urines and plasma in 262 African American patients from the University of Mississippi Chronic Kidney Disease Clinic and 31 African American controls. Significant correlations in eGFR and urinary 20-HETE/creatinine and 19-HETE/creatinine levels were observed. The eGFR increased by 17.47 [p=0.001] and 60.68 [(p=0.005]ml/min/for each ng/mg increase in 20-HETE and 19-HETE levels, respectively. Similar significant positive associations were found between the other urinary eicosanoids and eGFR and also with 19-HETE/urine creatinine concentration and proteinuria. We found that approximately 80% of plasma HETEs and 30% diHETEs were glucuronidated and the fractional excretion of 20-HETE was less than 1%. These results suggest that there is a significant hepatic source of urinary 20-HETE glucuronide and EETs with extensive renal biotransformation to metabolites which may play a role in the pathogenesis of CKD.


Subject(s)
Black or African American , Cytochrome P-450 Enzyme System/urine , Eicosanoids/urine , Glomerular Filtration Rate/physiology , Renal Insufficiency, Chronic/ethnology , Renal Insufficiency, Chronic/urine , Adult , Creatinine/blood , Creatinine/urine , Eicosanoids/blood , Female , Humans , Male , Middle Aged , Proteinuria/urine , Regression Analysis , Renal Insufficiency, Chronic/physiopathology , United States
7.
J Appl Toxicol ; 33(7): 644-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22271348

ABSTRACT

Cytochrome P450 (CYP)-mediated desulfuration of methyl parathion results in mechanism-based inhibition of the enzyme. Although previous data suggest that reactive sulfur is released and binds to the apoprotein, the identities of neither the adduct(s) nor the affected amino acid(s) have been clearly determined. In this study, nanospray tandem mass spectroscopy was used to analyze peptide digests of CYP resolved by SDS-PAGE from liver microsomes of male rats following incubation in the absence or presence of methyl parathion. Oxidative desulfuration was confirmed by measurement of methyl paraoxon, and inhibition of specific CYP isozymes was determined by measurement of testosterone hydroxylation. Total CYP content was quantified spectrophotometrically. Incubation of microsomes with methyl parathion decreased CYP content by 58%. This effect was not associated with a comparable increase in absorbance at 420 nm, suggesting the displacement of heme from the apoprotein. Rates of testosterone 2ß- and 6ß-hydroxylation, respectively, were reduced to 8 and 2%, implicating CYP3A and CYP2C11 in the oxidative desulfuration of methyl parathion. Mass spectrometric analysis identified 96 amu adducts to cysteines 64 and 378 of CYP3A1. In addition, a peptide containing cysteine 433 that coordinates with heme was possibly modified as it was detected in control, but not methyl parathion samples. A comparison of rat CYP3A1 with human CYP3A4 suggests that cysteines 64 and 378 reside along the substrate channel, remote from the active site. Alteration of these residues might modulate substrate entry to the binding pocket of the enzyme.


Subject(s)
Cytochrome P-450 Enzyme System/analysis , Insecticides/metabolism , Methyl Parathion/metabolism , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Humans , Hydroxylation , Insecticides/toxicity , Isoenzymes/metabolism , Kinetics , Male , Mass Spectrometry , Methyl Parathion/toxicity , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Molecular , Oxidation-Reduction , Proteomics , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet , Sulfur/metabolism , Testosterone/metabolism
8.
Biochemistry ; 45(51): 15617-23, 2006 Dec 26.
Article in English | MEDLINE | ID: mdl-17176083

ABSTRACT

Among the members of the cytochrome P450 superfamily, P450 2E1 is most often associated with the production of reactive oxygen species and subsequent cellular toxicity. We sought to identify a structural basis for this distinguishing feature of P450 2E1 by examining its carbon monoxide binding kinetics as a probe of conformation/dynamics. We employed liver microsomes from wild-type and P450 2E1 knockout mice in order to characterize this P450 in a natural membrane environment. The CO binding kinetics of the P450s of wild-type microsomes had a rapid component that was absent in the knockout microsomes. Data analysis using the maximum entropy method (MEM) correspondingly identified two distinct kinetic components in the wild-type microsomes and only one component in the knockout microsomes. The rapid kinetic component in wild-type microsomes was attributed to endogenous P450 2E1, while the slower component was derived from the remaining P450s. In addition, rapid binding kinetics and a single component were also observed for human P450 2E1 in a baculovirus expression system, in the absence of other P450s. Binding kinetics of both mouse and human P450 2E1 were slowed in the presence of ethanol, a modulator of this P450. The unusually rapid CO binding kinetics of P450 2E1 indicate that it is more dynamically mobile than other P450s and thus able to more readily interconvert among alternate conformations. This suggests that conformational switching during the catalytic cycle may promote substrate release from a short-lived binding site, allowing activated oxygen to attack other targets with toxic consequences.


Subject(s)
Cytochrome P-450 CYP2E1/chemistry , Intracellular Membranes/enzymology , Animals , Baculoviridae/enzymology , Baculoviridae/genetics , Binding Sites/genetics , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Cytochrome P-450 CYP2E1/deficiency , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Genetic Vectors , Humans , Intracellular Membranes/metabolism , Isoenzymes/chemistry , Isoenzymes/deficiency , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Protein Binding/genetics , Protein Conformation , Substrate Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...