Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927337

ABSTRACT

Butyric acid is attributed to gastrointestinal epithelial development and health and two studies were conducted to determine if supplementing encapsulated butyric acid and zinc (BZ) in lambs abruptly transitioned to a finishing diet has effects on growth performance, efficiency of dietary net energy utilization, rumen morphometrics, small intestinal histology, and carcass traits. Polypay wethers (n = 84; initial shrunk body weight = 38.8 kg ± 4.8 kg) were used in a randomized complete block design study. Wethers were abruptly transitioned from a high roughage-based diet to a 100% concentrate-based diet and dietary treatments were 0 or 2 g BZ/kg of diet dry matter. Study 1 evaluated growth performance and carcass traits of lambs over a 59.5 d feeding period, and Study 2 evaluated changes in rumen morphometrics and small intestine histology in serial harvested lambs. Wethers supplemented with BZ had increased body wall thickness, decreased calculated boneless closely trimmed retail cuts, and decreased red meat yield (p ≤ 0.03) compared to non-supplemented wethers. Linear effects (p ≤ 0.01) for harvest date were observed for most rumen and small intestine measurements. Supplementing wethers with BZ did not improve growth performance, carcass traits, or rumen and small intestine measurements. The effects of BZ supplementation on fat deposition in ruminants should be further investigated.

2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38828876

ABSTRACT

The objective was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Single-sourced Charolais × Red Angus steers (n = 256; body weight = 246 ±â€…1.68 kg) were used in a randomized complete block design and blocked by location into one of four treatments: 1) fed no DFM and no YCW (Control); 2) fed only the DFM (DFM; Certillus CP B1801 Dry, 28 g/steer d-1 ); 3) fed only the YCW (YCW; Celmanax; 18 g/steer d-1 ); and 4) fed the DFM and the YCW (DFM+YCW). Steers were vaccinated for respiratory and clostridial diseases and treated for internal and external parasites at processing and individually weighed on days 1, 14, 42, 77, 105, 133, 161, 182, 230, and 258. To determine bacterial prevalence, fecal samples were collected on days 1, 14, 77, 133, 182, and 230 and environmental (pen area, feed, and water) samples were collected at the beginning of the week when cattle were weighed. No treatment × day interactions or treatment effects (P > 0.05) were observed between treatment groups at any sampling days for the bacterial populations. Samples on days 1, 133, and 182 had greater (P < 0.05) Clostridia levels compared to the other sampling points but were not different from each other. Clostridia levels were also greater (P < 0.05) on day 77 compared to days 14 and 230. Samples on days 77 and 230 had greater (P < 0.05) Clostridium perfringens levels compared to the other sampling points but were not different (P > 0.05) from each other. Samples on days 1 and 14 had lower (P < 0.05) total Escherichia coli levels compared to the other sampling points but were not different (P > 0.05) from each other. Escherichia coli levels on day 77 were higher (P < 0.05) compared to days 133, 182, and 230. Little Salmonella prevalence (1.5%) was observed throughout the study. This study had greater levels of Clostridia compared to small and large commercial feedlots in the Church and Dwight research database, but C. perfringens, total and pathogenic E. coli, and Salmonella prevalence were notably lower. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could partially explain the lack of differences with DFM or YCW supplementation. The DFM and YCW used alone or in combination cannot be expected to show additional benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


The objective of this research was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could further explain the reasons for little differences. The DFM and YCW used alone or in combination cannot be expected to show productive benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


Subject(s)
Animal Feed , Bacillus subtilis , Clostridium perfringens , Diet , Dietary Supplements , Probiotics , Animals , Cattle , Male , Animal Feed/analysis , Diet/veterinary , Clostridium perfringens/physiology , Probiotics/pharmacology , Probiotics/administration & dosage , Dietary Supplements/analysis , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Salmonella , Escherichia coli , Feces/microbiology , Clostridium Infections/veterinary , Clostridium Infections/epidemiology , Clostridium Infections/prevention & control , Clostridium Infections/microbiology , Clostridium , Random Allocation
3.
Anim Biosci ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38938036

ABSTRACT

Objective: The objective of this study was to determine if a formulated blend of capsicum oleoresin, clove essential oil, and garlic essential oil (Fytera® Advance - Selko® USA, Indianapolis IN; CCG) influences measures of cattle growth, efficiency, or carcass traits, during the finishing phase in steers fed a concentrate-based diet. Methods: Charolais × Angus steers (n = 96; initial shrunk BW = 391± 34.0 kg) were used in a 144-d (16 February 2023 to 9 July 2023) finishing feedlot experiment in Brookings, SD. Steers were individually weighed and allotted to one of 14 pens (6 to 7 steers; 7 pens/treatment) in a randomized complete block design and randomly assigned to 1 of 2 treatments: control diet without the test product (CON) or a diet including CCG at 500 mg/steer daily (CCG). Steers were fed twice daily, and bunks were managed according to a slick bunk system. Results: There were no differences (P ≥ 0.10) in any growth performance outcomes from d 1 to 35, 36 to 70, or 71 to 98. From d 99 to 144 steers from CCG tended to have 5% greater ADG (P = 0.09) and 8% improved G:F (P = 0.01). No differences (P ≥ 0.15) were noted for cumulative growth performance measures. No differences were noted for any carcass measurements or categorical carcass outcomes, nor lung or liver health outcomes (P ≥ 0.15). Conclusion: The use of CCG had no influence on cumulative growth performance responses. However, the use of CCG improved G:F during the late feeding period.

4.
Animals (Basel) ; 14(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396535

ABSTRACT

The objective of the study was to determine the influence that initial BW has on growth performance responses, efficiency of dietary net energy (NE) utilization, and carcass traits in feedlot steers. Charolais×Red Angus steers (n = 70) selected from a larger single-source group were used in a 209-d growing-finishing feedlot experiment. Steers were assigned to two groups based on initial BW (light initial weight, LIW = 273 ± 16.0 kg; heavy initial weight, HIW = 356 ± 14.2 kg) and allotted into 10 pens (n = 7 steers per pen; 5 pens per experimental group) the within pen standard deviation for LIW was from 14.1 kg to 20.9 kg and for HIW was from 13.7 kg to 16.0 kg. Steers were fed a common diet once daily. Experimental data were analyzed as a randomized complete block design with pen as the experimental unit. LIW steers had a greater cumulative HH change (p = 0.04). A treatment × day interaction (p = 0.05) was observed for HH with HIW steers having a greater HH at all time points. Final BW and carcass-adjusted (HCW/0.625) BW were greater for HIW steers by 13.1% and 13.4% respectively (p ≤ 0.01). HIW steers had a greater DMI (p = 0.01) compared to LIW. Cumulative ADG was greater for HIW by 3% (p = 0.04). LIW steers had better feed conversion (p = 0.01). HIW steers had greater (p ≤ 0.05) HCW, marbling scores, and yield grade (YG), with decreased REA/HCW (p = 0.01) compared to LIW. The distribution of USDA Yield Grade was altered by initial BW (p = 0.04). No differences were detected (p ≥ 0.22) for the distribution of Quality grade nor liver abscess prevalence and severity. Regression coefficients did not differ between LIW and HIW for urea space calculations of empty body water, fat, or protein (p ≥ 0.70). A quadratic response was noted for empty body fat (EBF), empty body water (EBH20), and carcass protein (CP). In conclusion, HIW steers had greater growth, but poorer feed efficiency compared to LIW steers. Steers with a HIW produced fatter carcasses with a greater degree of marbling.

5.
Transl Anim Sci ; 7(1): txad119, 2023.
Article in English | MEDLINE | ID: mdl-37942177

ABSTRACT

The objective of this study was to determine if supplementation and delivery method of a "stress pack" composed of organic trace minerals and Saccharomyces cerevisiae yeast culture product influenced growth performance, feed efficiency, and hepatic trace mineral concentration in newly weaned steers. Crossbred steers (n = 192; 256 ±â€…14.0 kg) were used in a 49-day receiving phase experiment. Within 36 hours of weaning, steers were weighed, allotted to 24 pens (n = 8 steers/pen; 8 pens/treatment), and randomly assigned to treatments: 1) a traditional receiving diet (CON), 2) a traditional receiving diet plus the "stress-pack" directly in the diet (FORCE), and 3) a traditional receiving diet plus a low-moisture, cooked molasses block fortified with the "stress-pack" (TUB). The "stress-pack" was offered the first 28 day of the 49-day receiving period. Due to adverse weather conditions forecasted on day 1, biopsy samples were collected from a subsample of steers (n = 14 steers) on day 1 to establish hepatic trace mineral concentration baseline. Steers were selected based on the mean body weight (BW) from allotment (day -1) of the pen for collection of subsequent samples (n = 1 steer/pen) on days 14, 28, and 49 for hepatic trace mineral concentration determination. Cumulative dry matter intake (DMI) (P = 0.01) was greater for FORCE compared to CON and TUB. Final BW and average daily gain (ADG) tended (P ≤ 0.10) to be greater for FORCE compared to TUB and CON by 5.4% and 9.4%, respectively. Feed efficiency did not differ between treatments (P = 0.28). A treatment × day interaction (P ≤ 0.01) for hepatic Cu concentration was noted. The FORCE treatment had greater hepatic Cu compared to TUB and CON for the entire period. The steers that received TUB had greater hepatic Cu compared to CON on days 14 and 28, but similar to CON on day 49. The addition of a "stress-pack" to diets offered to newly weaned cattle enhanced hepatic trace mineral concentration, and delivery method influences DMI and daily gain.

6.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37791975

ABSTRACT

Our investigation elucidated the effects of severe temperature fluctuations on cellular and physiological responses in beef cattle. Eighteen Red Angus beef steers with an average body weight of 351 ±â€…24.5 kg were divided into three treatment groups: 1) Control (CON), exposed to a temperature-humidity index (THI) of 42 for 6 h without any temperature changes; 2) Transport (TP), subjected to a one-mile trailer trip with a THI of 42 for 6 h; and 3) Temperature swing (TS), exposed to a one-mile trailer trip with a THI shift from 42 to 72-75 for 3 h. Our findings indicate that TS can induce thermal stress in cattle, regardless of whether the overall temperature level is excessively high or not. Behavioral indications of extreme heat stress in the cattle were observed, including extended tongue protrusion, reduced appetite, excessive salivation, and increased respiratory rate. Furthermore, we observed a pronounced overexpression (P < 0.05) of heat shock proteins (HSPs) 20, 27, and 90 in response to the TS treatment in the longissimus muscle (LM). Alterations in signaling pathways associated with skeletal muscle growth were noted, including the upregulation (P < 0.01) of Pax7, Myf5, and myosin heavy chain (MHC) isoforms. In addition, an increase (P < 0.05) in transcription factors associated with adipogenesis was detected (P < 0.05), such as PPARγ, C/EBPα, FAS, and SCD in the TS group, suggesting the potential for adipose tissue accumulation due to temperature fluctuations. Our data illustrated the potential impacts of these temperature fluctuations on the growth of skeletal muscle and adipose tissue in beef cattle.


In this study, we investigated the effects of severe temperature fluctuations on beef cattle and their cellular and physiological responses. Our findings demonstrate that even moderate temperature swings can cause thermal stress in cattle, leading to observable behavioral signs such as extended tongue protrusion, reduced appetite, excessive salivation, and increased respiratory rate. We also observed a significant increase in the expression of heat shock proteins (HSPs), which protect cells from stress, indicating their importance as early responders to temperature fluctuations. Furthermore, we examined the signaling pathways involved in skeletal muscle growth and found that severe temperature fluctuations can stimulate the upregulation of myogenic regulatory factors and myosin heavy chains. These changes suggest an increased demand for muscle contractile properties and hyperplasia during temperature challenges. In addition, our study revealed alterations in transcription factors associated with adipogenesis, such as PPARγ and C/EBPα, indicating the potential for adipose tissue accumulation in response to temperature fluctuations.


Subject(s)
Adipogenesis , Adipose Tissue , Cattle , Animals , Temperature , Adipose Tissue/metabolism , Body Weight , Adipogenesis/physiology , Muscle, Skeletal/metabolism
7.
Transl Anim Sci ; 7(1): txad084, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37547801

ABSTRACT

The objective of this study was to determine the influence that a ruminally-protected B-vitamin (RPBV) blend (containing vitamin B5, B6, B7, B9, and B12) had on growth performance, efficiency of dietary net energy utilization, carcass trait responses, and liver abscess severity and prevalence in beef steers fed a finishing diet. Steers (n = 246; initial shrunk body weight [BW] = 411 ±â€…25.8 kg) from two different sources, were used in a 126-d RCBD experiment. Within 48 h after arrival, steers were individually weighed and allotted to 1 of 24 pens (n = 8 to 12 steers; 8 pens per treatment) and randomly assigned to 1 of 3 treatments: (1) No RPBV; (2) RPBV1 at 1 g/steer d-1; 3) RPBV2 at 2 g/steer d-1. During the first 14 d, cattle received two transition diets with increasing concentrate. From days 15 to 126, cattle were fed the final diet containing 53% dry-rolled corn; 23% corn silage; 20% MDGS; and 4% suspended supplement. On the first 28 d, steers of RPBV1 had a greater average daily gain (ADG) and better feed conversion (G:F), both by 9% (quadratic effect, P ≤ 0.02). However, cumulatively, no differences (P ≥ 0.13) among treatments were found for dry-matter intake (DMI), live final BW, ADG, or G:F. Carcass-adjusted final BW, ADG, and G:F were not influenced by treatment (P ≥ 0.59). Additionally, carcass weight, dressing percentage, marbling score, kidney-pelvic-heart fat, or BW at 28% empty body fat did not differ among treatments (P ≥ 0.11). Ribeye area (REA) was altered (quadratic effect, P = 0.02) by treatment; steers from RPBV1 had decreased REA compared to others. Additionally, calculated yield grade (YG) and calculated retail yield (RY) were altered (quadratic effect, P ≤ 0.01) by treatment; steers from RPBV1 had increased YG and decreased RY compared to others. Estimated empty body fatness tended (P = 0.06) to be greater from steers-fed RPBV compared to control. Overall USDA YG distribution was altered by dietary treatment (P = 0.01). The proportions of YG1 and YG5 carcasses were unaffected by treatment, but there was a shift in the proportion of carcasses that graded YG2, YG3, and YG4 among treatments. Distribution of USDA Quality Grade was not altered by treatment (P = 0.53). No treatment differences in liver abscess incidence or severity were observed (P = 0.13). The use of RPBV altered carcass muscularity and rib fat accumulation affecting the overall YG distribution. However, RPBV did not appreciably influence any cumulative growth performance measures or liver abscess outcome.

8.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37422728

ABSTRACT

Based on principles of the California Net Energy System, the dry matter intake (DMI) by feedlot cattle can be subdivided into DMI required for maintenance and DMI required for gain. Thus, if DMI along with body weight at a compositional endpoint and shrunk weight gain are known, dietary concentrations of net energy for maintenance and gain (NEm and NEg, respectively) can be calculated from growth performance data. Close agreement between growth performance-predicted and tabular NEm and NEg values implies the system can be used to accurately predict growth performance and be used to evaluate marketing and management decisions. We used 747 pen means from 21 research studies conducted at Texas Tech University and South Dakota State University to assess the agreement between growth performance-predicted NEm and NEg values and those calculated from tabular energy values for feeds reported by the 2016 National Academies of Science, Engineering, and Medicine publication on beef cattle nutrient requirements. Regression of growth performance-predicted values on tabular values with adjustment for random effects of study indicated that the intercepts of the two regressions did not differ from zero, and the slopes did not differ from one. Residuals (tabular minus growth performance-predicted values) for NEm and NEg averaged -0.003 and -0.005, respectively. Nonetheless, the precision of growth performance-predicted values was low, with approximately 40.3% of performance-predicted NEm values and 30.9% of NEg values falling within 2.5% of the corresponding tabular value. Residuals for NEm were divided into quintiles to evaluate dietary, growth performance, carcass, and energetics variables that might help explain lack of precision in growth performance-predicted values. Among the variables considered, gain:feed ratio was the most discriminating, with differences (P < 0.05) among each of the quintiles. Despite these differences, however, gain:feed ratio did not explain important percentages of variation in components of growth performance-predicted NEm values like maintenance energy requirements (r2 = 0.112) and retained energy (r2 = 0.003). Further research with large datasets that include dietary composition, growth performance and carcass data, and environmental variables, along with fundamental research on maintenance requirements and energy retention, will be required to identify ways to improve the precision of growth performance-predicted NE values.


Feedlot growth performance and carcass data can be used to estimate dietary net energy values. The degree to which growth performance-predicted values agree with tabular energy values for feeds is an indication of how accurately the California Net Energy System can be used to predict cattle growth performance. Using data from 747 pens of cattle in feedlot research studies, we found that growth performance-predicted and tabular net energy values agreed on average, but the precision of growth performance-predicted estimates was less than desired for practical application. Based on analysis of residuals, differences in gain:feed ratio were strongly related to growth performance-predicted net energy values. Research is needed on approaches to improve the precision of growth performance-predicted net energy values.


Subject(s)
Diet , Weight Gain , Cattle , Animals , Diet/veterinary , Body Weight , Texas , Animal Feed/analysis
9.
Foodborne Pathog Dis ; 20(8): 334-342, 2023 08.
Article in English | MEDLINE | ID: mdl-37405734

ABSTRACT

The objective was to investigate the influence of cattle origin and region of finishing on the prevalence of Salmonella, Escherichia coli O157:H7, and select antimicrobial resistance in E. coli populations. Yearling heifers (n = 190) were utilized in a 2 × 2 factorial arrangement. After determining fecal Salmonella prevalence, heifers were sorted into one of four treatments: heifers originating from South Dakota (SD) and finished in SD (SD-SD); heifers originating from SD and finished in Texas (SD-TX); heifers originating from TX and finished in SD (TX-SD); and heifers originating from TX and finished in TX (TX-TX). Fecal, pen, and water scum line samples were collected longitudinally throughout the study; hide swab and subiliac lymph node (SLN) samples were collected at study end. A treatment × time interaction was observed (p ≤ 0.01) for fecal Salmonella prevalence, with prevalence being greatest for TX-TX and TX-SD heifers before transport. From day (d) 14 through study end, prevalence was greatest for TX-TX and SD-TX heifers compared with SD-SD and TX-SD heifers. Salmonella prevalence on hides were greater (p ≤ 0.01) for heifers finished in TX compared with SD. Salmonella prevalence in SLN tended (p = 0.06) to be greater in TX-TX and SD-TX heifers compared with TX-SD and SD-SD. Fecal E. coli O157:H7 prevalence had a treatment × time interaction (p = 0.04), with SD-TX prevalence being greater than TX-SD on d 56 and SD-SD and TX-TX being intermediate. A treatment × time interaction was observed for fecal trimethoprim-sulfamethoxazole-resistant and cefotaxime-resistant E. coli O157:H7 prevalence (p ≤ 0.01). Overall, these data suggest that the region of finishing influences pathogenic bacterial shedding patterns, with the initial 14 d after feedlot arrival being critical for pathogen carriage.


Subject(s)
Anti-Infective Agents , Cattle Diseases , Escherichia coli Infections , Escherichia coli O157 , Animals , Cattle , Female , Prevalence , Incidence , Feces/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Texas , Salmonella , Cattle Diseases/drug therapy , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Colony Count, Microbial
10.
Transl Anim Sci ; 7(1): txad012, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36880046

ABSTRACT

The objective of this research was to determine the influence manger space restriction had on program-fed feedlot heifers during the growing phase. Charolais × Angus heifers [initial body weight (BW) = 329 ± 22.1 kg] were used in a 109-d backgrounding study. Heifers were received approximately 60 d prior to study initiation. Initial processing (53 d before study initiation) included individual BW, application of an identification tag, vaccination against viral respiratory pathogens and clostridial species, and administration of doramectin pour-on for control of internal and external parasites. All heifers were administered 36 mg of zeranol at study initiation and were assigned to 1 of 10 pens (n = 5 pens/treatment with 10 heifers/pen) in a randomized complete block design (blocked by location). Each pen was randomly assigned to 1 of 2 treatments: 20.3 cm (8IN) or 40.6 cm (16IN) of linear bunk space/heifer. Heifers were individually weighed on days 1, 14, 35, 63, 84, and 109. Heifers were programmed to gain 1.36 kg daily based on predictive equations set forth by the California Net Energy System. To calculate predictive values, a final BW of 575 kg was assumed to be the mature BW of the heifers and tabular net energy values of 2.05 NEm and 1.36 NEg from days 1 to 22, 2.00 NEm and 1.35 NEg from days 23 to 82, and 1.97 NEm and 1.32 NEg from days 83 to 109 were used. Data were analyzed using the GLIMMIX procedure of SAS 9.4 with manger space allocation as the fixed effect and block as the random effect. No differences (P > 0.35) were observed between 8IN or 16IN heifers for initial BW, final BW, average daily gain, dry matter intake, feed efficiency, variation in daily weight gain within each pen or applied energetic measures. No differences (P > 0.50) were observed between treatments for morbidity. Although not statistically analyzed, 8IN heifers appeared to have looser stools during the first 2 weeks compared to the 16IN heifers. These data suggest restricting manger space allocation from 40.6 to 20.3 cm did not negatively influence gain efficiency or the efficiency of dietary net energy utilization in heifers programmed fed a concentrate-based diet to gain 1.36 kg daily. The use of tabular net energy values and required net energy of maintenance and retained energy equations are effective means to program cattle to a desired rate of daily gain during the growing phase.

11.
Transl Anim Sci ; 7(1): txad016, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36845361

ABSTRACT

The objective of this research was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and yeast cell wall (YCW) product used alone or in combination on growth performance, dietary net energy utilization, and carcass characteristics in beef steers finished under climatic conditions in the Northern Plains (NP). Single-sourced Charolais × Red Angus steers [n = 256; body weight = 246 ± 1.68 kg] were blocked by pen location in a 2 × 2 factorial arrangement of DFM and YCW. Steers were administered a series of diets common to the NP and administered ractopamine hydrochloride (RH; 300 mg/kg) during the last 28 d of the finishing phase. Steers were vaccinated and poured at processing and individually weighed on days 1, 14, 42, 77, 105, 133, 161, 182, 230, and 258. Temperature-humidity index (THI) was calculated during RH supplementation. For 98% of the experiment, the THI was lower than 72 and thus cattle were not under high-ambient temperature. On days 1, 2, 21, and 22 of RH supplementation, respiration rates (RR), and panting scores (PS) were determined before and after AM and PM feedings (0700 h, 1100 h, 1400 h, and 1700 h). A DFM + YCW interaction was noted for the proportion of steers categorized as PS 2.0 at 1100 h on day 21 (P = 0.03) and RR on day 21 at 1400 h (P = 0.02). Control steers had a greater proportion of PS 2.0 compared to DFM or YCW steers (P ≤ 0.05), while DFM + YCW steers did not differ from others (P ≥ 0.05); DFM + YCW steers had greater (P < 0.05) RR compared to DFM steers, while control and YCW steers did not differ from others (P ≥ 0.05). No DFM + YCW interactions or main effects (P ≥ 0.05) were observed for cumulative growth performance measures. However, YCW steers had 2% lower (P = 0.04) dry matter intakes compared to steers not fed YCW. No DFM + YCW interactions or main effects (P ≥ 0.05) were observed for carcass traits or liver abscess severity. However, a DFM + YCW interaction (P < 0.05) was noted for the distribution of USDA yield grade (YG) 1 and Prime carcasses. Control steers had a greater proportion (P < 0.05) of YG 1 carcasses compared to other treatments. DFM+YCW steers had a greater proportion (P < 0.05) of USDA Prime carcasses compared to DFM or YCW but were similar to control steers, which were also similar to DFM or YCW. Overall, the use of DFM and YCW alone or in combination had minimal effects on growth performance, carcass traits, and heat stress measures in steers finished in NP climatic conditions.

12.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36592750

ABSTRACT

Two experiments were conducted to investigate the effects of feeding kernel processed corn silage to growing calves at 65% inclusion (dry matter [DM] basis; Exp. 1] and finishing beef steers at 20% inclusion (DM basis; Exp. 2). In Exp. 1, steers (n = 184; initial shrunk body weight [BW] = 388 ± 22.3 kg) were used to evaluate the influence that kernel processing of corn silage has on production responses when fed at 65% diet inclusion (DM basis) during a 46-d growing period. Steers were allotted to 1 of 24 pens (12 replicate pens/treatment). Treatments were based upon corn silage that was either kernel processed or not. In Exp. 2, steers (n = 192; initial shrunk BW = 446 ± 28.3 kg) were used in a 112-d finishing experiment. Treatments were grouped in a 2 × 2 factorial arrangement (24 pens total; 8 steers/pen) to evaluate corn silage harvest maturity (1/2 to 2/3 milk line or black layer) and kernel processing (processed or not) at time of corn silage harvest on finishing steer growth performance and carcass traits when corn silage is fed at a dietary DM inclusion of 20%. Both experiments were analyzed as a randomized completed block design with pen as experimental unit. In Exp. 1, final BW tended (P = 0.07) to be increased by 3 kg in kernel processed corn silage. Daily weight gain and DM intake were increased (P ≤ 0.04) by 6% and 2%, respectively, in steers fed kernel processed corn silage compared to controls; however, gain efficiency was not appreciably influenced by treatment (P = 0.15). In Exp. 2, there were no harvest maturity × kernel processing interactions (P ≥ 0.26) for any growth performance measures or any parameters related to efficiency of dietary NE utilization. No harvest maturity × kernel processing interactions (P ≥ 0.08) were observed for any carcass traits except for the distribution of USDA Prime carcasses (P = 0.04). Steers fed 2/3 milk line and unprocessed corn silage had a lower (P = 0.05) proportion of carcasses grade USDA Prime (0.0%) compared to all other treatments (12.0%). Harvest time (P ≥ 0.07) and kernel processing (P ≥ 0.07) of corn silage had no appreciable influence on any other carcass trait measures. These data indicate that kernel processed corn silage fed to growing calves at 65% diet inclusion (DM basis) enhances intake and daily gain, while kernel processed corn silage fed to finishing steers at 20% diet inclusion (DM basis) does not appreciably influence daily gain, efficiency of gain, or carcass parameters.


Kernel processing of corn silage has yielded inconsistent results on diet digestibility and growth performance in beef cattle. These are likely a function of a variety of factors such as differing dry matter concentration of corn silage at harvest, diet inclusion levels, and length of cut. Two experiments were conducted to determine the effect that kernel processing of corn silage has on production responses in growing (65% dietary dry matter inclusion) and finishing beef steers (20% dietary dry matter inclusion). Data from the growing steer experiment when corn silage was included in the diet at 65% (dry matter basis) indicate that kernel processing of corn silage enhances dry matter intake and daily weight gain of beef steers with no appreciable influence on DM conversion efficiency. Data from the finishing steer experiment indicate that harvest maturity and kernel processing of corn silage have minimal effects on animal growth performance and carcass traits in finishing steers when corn silage is fed at 20% inclusion (dry matter basis). Variable responses could be related to differences in inclusion level, differences in effective roughage level fed, and a variety of other factors. Overall, these results suggest that corn silage fed to growing calves should be kernel processed to enhance dry matter intake and daily weight gain, while kernel processed corn silage fed to finishing steers does not appreciably influence daily gain, efficiency of gain, or carcass parameters.


Subject(s)
Silage , Zea mays , Animals , Cattle , Animal Feed/analysis , Diet/veterinary , Phenotype , Silage/analysis
13.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36592760

ABSTRACT

The objective of this experiment was to determine the influence that similar dietary roughage equivalency offered in a single or two-diet system during a 210-d growing-finishing period has on growth performance, the efficiency of dietary net energy (NE) utilization, and carcass traits in beef steers. Beef steers (n = 46; initial shrunk [4%]; body weight [BW] = 281 ± 40.4 kg) were fed once daily, and bunks were managed according to a slick bunk management system across all 10 pens. Treatments included the following: 1) A single diet program that was formulated to provide 16% (dry matter [DM] basis) dietary roughage equivalency; SD) or 2) multiple diet programs (formulated to provide a dietary roughage equivalency (DM basis) of 25% for 98 d, 16% for 14 d, and 7% for 98 d; MD). Day 1 to 112 was considered the growing period, and day 113 to 210 (the day of harvest) was considered the finishing period, all steers were implanted on day 1 with a 100 mg trenbolone acetate (TBA) and 14 mg estradiol benzoate (EB) implant and implanted with a 200 mg TBA and 28 mg EB implant on day 112. Average daily gain tended (P = 0.06) to be 9.5% greater for SD compared to MD during the growing portion, and average daily gain (ADG) was greater by 11.3% (P = 0.01) for MD compared to SD during the finishing phase of the experiment. Cumulative ADG did not differ (P ≥ 0.86) between treatments (1.61 vs. 1.62 ± 0.046 kg) for SD and MD, respectively. Cumulative dietary NEm and NEg calculated based on performance did not differ (P ≥ 0.96) between treatments. There were no differences (P ≥ 0.18) detected between treatments for hot carcass weight, dressing percent, longissimus muscle area, rib fat, United States Department of Agriculture (USDA) marbling score, kidney, pelvic, heart fat, yield grade, retail yield, empty body fat, or body weight at 28% estimated empty body fat. These data indicate that feedlot producers can feed a single growing-finishing diet to beef steers with minimal effects on overall growth performance or carcass traits.


We aimed to determine the influence of feeding a dietary roughage equivalency in a single or multiple diet system during a 210-d growing-finishing period on growth performance and carcass traits of beef steers. Cumulative average daily gain did not differ between treatments. Also, there were no differences detected between treatments for any carcass traits. Feedlot producers can feed a single "grow-finish" diet to weaned beef steers with minimal effects on overall growth performance or carcass traits. Feeding a single diet during both the growing and finishing phases could be used as a strategy to simplify management by reducing the number of diets fed, or as a way to use ensiled roughages more rapidly to reduce feed-out losses during summer months.


Subject(s)
Animal Feed , Dietary Fiber , Cattle , Animals , Animal Feed/analysis , Weight Gain/physiology , Diet/veterinary , Trenbolone Acetate , Body Composition
14.
Transl Anim Sci ; 6(4): txac128, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36196226

ABSTRACT

Dry-corn milling biorefineries have the opportunity to install technology to fractionate corn prior to fermentation, which creates a product stream of fibrous bran that can be fed to cattle. The objective of this study was to determine the effects of replacing dietary corn with corn bran and condensed distillers solubles (CBCDS) or wet-corn gluten feed (WCGF) on growth performance, efficiency of dietary net energy (NE) utilization, and carcass characteristics in finishing steers. British × Continental steers (n = 240; initial body weight [BW] = 401 ± 43.2 kg) were assigned to the following dietary treatments in a randomized complete block design (RCBD): 1) a control finishing diet with no corn milling coproducts; 2) a finishing diet that contained CBCDS at 20% replacement of dietary corn; and 3) a finishing diet that contained WCGF at 20% replacement of dietary corn. Dietary corn (50:50 of dry-rolled corn and high-moisture corn) was included at 81.5% for control diet-fed steers and 61.5% for steers-fed CBCDS and WCGF. Steers were fed for 145.5 d until visually appraised to have 1.27 cm of rib fat (RF) and were harvested at a commercial abattoir where carcass data were collected. Data were analyzed as an RCBD with pen as the experimental unit, treatment as a fixed effect and block as a random effect. There were no significant differences (P ≥ 0.28) between treatments for final BW, average daily gain, dry matter intake, feed conversion efficiency, observed dietary NE for maintenance (NEm), and NE for gain (NEg), or observed-to-expected NEm and NEg. Additionally, no differences (P ≥ 0.16) were noted between treatments for hot carcass weight, ribeye area, RF, marbling score, kidney-pelvic-heart fat, estimated empty body fat (EBF), BW at 28% EBF (AFBW), and distribution of USDA Quality and Yield grades. Control steers tended (P = 0.10) to have the highest calculated yield grade followed by WCGF and CBCDS. Furthermore, WCGF steers tended (P = 0.08) to have the highest calculated retail yield followed by CBCDS and control steers. Replacement NEm and NEg values of corn coproducts were determined to be 2.14 and 1.42 for CBCDS and 2.09 and 1.37 for WCGF, respectively. Thus, CBCDS can be included in finishing steer diets at 20% replacement of corn without detriment to growth performance or carcass characteristics.

15.
Anim Biosci ; 35(10): 1545-1555, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35507848

ABSTRACT

OBJECTIVE: Our study aimed to investigate the effects of a 2% increase in dietary total digestible nutrients (TDN) value during the growing (7 to 12 mo of age) and fattening (13 to 30 mo of age) period of Hanwoo steers. METHODS: Two hundred and twenty Hanwoo steers were assigned to one of two treatments: i) a control group (basal TDN, BTDN, n = 111 steers, growing = 70.5%, early fattening = 71.0%, late fattening = 74.0%) or high TDN (HTDN, n = 109 steers, growing = 72.6%, early = 73.1%, late = 76.2%). Growth performance, carcass traits, blood parameters, and gene expression of longissimus dorsi (LD) (7, 18, and 30 mo) were quantified. RESULTS: Steers on the BTDN diets had increased (p≤0.02) DMI throughout the feeding trial compared to HTDN, but gain did not differ appreciably. A greater proportion of cattle in HTDN received Korean quality grade 1 (82%) or greater compared to BTDN (77%), while HTDN had a greater yield grade (29%) than BTDN (20%). Redness (a*) of LD muscle was improved (p = 0.021) in steers fed HTDN. Feeding the HTDN diet did not alter blood parameters. Steers fed HTDN diet increased (p = 0.015) the proportion of stearic acid and tended to alter linoleic acid. Overall, saturated, unsaturated, monounsaturated, and polyunsaturated fatty acids of LD muscle were not impacted by the HTDN treatment. A treatment by age interaction was noted for mRNA expression of myosin heavy chain (MHC) IIA, IIX, and stearoyl CoA desaturase (SCD) (p≤0.026). No treatment effect was detected on gene expression from LD muscle biopsies at 7, 18, and 30 mo of age; however, an age effect was detected for all variables measured (p≤0.001). CONCLUSION: Our results indicated that feeding HTDN diet could improve overall quality grade while minimum effects were noted in gene expression, blood parameters, and growing performance. Cattle performance prediction in the feedlot is a critical decisionmaking tool for optimal planning of cattle fattening and these data provide both benchmark physiological parameters and growth performance measures for Hanwoo cattle feeding enterprises.

16.
J Anim Sci ; 100(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35034122

ABSTRACT

Reliable predictions of metabolizable energy (ME) from digestible energy (DE) are necessary to prescribe nutrient requirements of beef cattle accurately. A previously developed database that included 87 treatment means from 23 respiration calorimetry studies has been updated to evaluate the efficiency of converting DE to ME by adding 47 treatment means from 11 additional studies. Diets were fed to growing-finishing cattle under individual feeding conditions. A citation-adjusted linear regression equation was developed where dietary ME concentration (Mcal/kg of dry matter [DM]) was the dependent variable and dietary DE concentration (Mcal/kg) was the independent variable: ME = 1.0001 × DE - 0.3926; r2 = 0.99, root mean square prediction error [RMSPE] = 0.04, and P < 0.01 for the intercept and slope. The slope did not differ from unity (95% CI = 0.936 to 1.065); therefore, the intercept (95% CI = -0.567 to -0.218) defines the value of ME predicted from DE. For practical use, we recommend ME = DE - 0.39. Based on the relationship between DE and ME, we calculated the citation-adjusted loss of methane, which yielded a value of 0.2433 Mcal/kg of dry matter intake (DMI; SE = 0.0134). This value was also adjusted for the effects of DMI above maintenance, yielding a citation-adjusted relationship: CH4, Mcal/kg = 0.3344 - 0.05639 × multiple of maintenance; r2 = 0.536, RMSPE = 0.0245, and P < 0.01 for the intercept and slope. Both the 0.2433 value and the result of the intake-adjusted equation can be multiplied by DMI to yield an estimate of methane production. These two approaches were evaluated using a second, independent database comprising 129 data points from 29 published studies. Four equations in the literature that used DMI or intake energy to predict methane production also were evaluated with the second database. The mean bias was substantially greater for the two new equations, but slope bias was substantially less than noted for the other DMI-based equations. Our results suggest that ME for growing and finishing cattle can be predicted from DE across a wide range of diets, cattle types, and intake levels by simply subtracting a constant from DE. Mean bias associated with our two new methane emission equations suggests that further research is needed to determine whether coefficients to predict methane from DMI could be developed for specific diet types, levels of DMI relative to body weight, or other variables that affect the emission of methane.


Subject(s)
Energy Intake , Methane , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Energy Metabolism , Linear Models
17.
Foods ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34574167

ABSTRACT

The objective of this research was to investigate the influence of maternal prepartum dietary carbohydrate source on growth performance, carcass characteristics, and meat quality of offspring. Angus-based cows were assigned to either a concentrate-based diet or forage-based diet during mid- and late-gestation. A subset of calves was selected for evaluation of progeny performance. Dry matter intake (DMI), body weight (BW), average daily gain (ADG), gain to feed (G:F), and ultrasound measurements (muscle depth, back fat thickness, and intramuscular fat) were assessed during the feeding period. Carcass measurements were recorded, and striploins were collected for Warner-Bratzler shear force (WBSF), trained sensory panel, crude fat determination and fatty acid profile. Maternal dietary treatment did not influence (p > 0.05) offspring BW, DMI, ultrasound measurements, percent moisture, crude fat, WBSF, or consumer sensory responses. The forage treatment tended to have decreased (p = 0.06) 12th rib backfat compared to the concentrate treatment and tended to have lower (p = 0.08) yield grades. The concentrate treatment had increased (p < 0.05) a* and b* values compared to the forage treatment. These data suggest variation in maternal diets applied in this study during mid- and late-gestation has limited influence on progeny performance.

18.
Animals (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072859

ABSTRACT

Two studies were conducted to evaluate the effect of encapsulated methionine on live performance, carcass characteristics, and skeletal muscle development in feedlot steers. In Experiment 1, 128 crossbred steers (body weight [BW] = 341 ± 36.7 kg) were used in a randomized complete block design and supplemented with 0, 4, 8, or 12 g/(head day [d]) of ruminally protected methionine (0MET, 4MET, 8MET, and 12MET, respectively) for 111 d or 139 d. In Exp. 2, 20 steers (BW = 457 ± 58 kg) were stratified by BW and randomly assigned to either the 0MET or 8MET treatment; longissimus muscle (LM) biopsies were collected on d 0, 14, 28, 42, and 56, and analyzed for mRNA and protein expression. Additionally, immunohistochemical analysis was performed to measure fiber type area and distribution as well as the density of muscle nuclei and satellite cells (Myf5, Pax7, and Myf5/Pax7). In Experiment 1, no significant differences were observed for live performance (p ≥ 0.09). There was, however, a linear relationship between LM area and methionine supplementation (p = 0.04), with a 9% increase in the area when steers were supplemented with 12MET compared to 0MET. In Exp. 2, There were no treatment × day interactions (p ≥ 0.10) for expression of mRNA or protein abundance. Although mRNA expression and protein abundance of all genes were influenced by day (p ≤ 0.04), methionine supplementation did not have a significant effect (p ≥ 0.08). There was a significant treatment × day interaction for distribution of MHC-I fibers (p = 0.03), where 8MET supplemented cattle had a greater proportion of MHC-I fibers after 56 d of supplementation than did 0MET steers. Cross-sectional area was increased over time regardless of fiber type (p < 0.01) but was unaffected by treatment (p ≥ 0.36). While nuclei density was not impacted by treatment (p = 0.55), the density of myonuclei increased nearly 55% in 8MET supplemented cattle (p = 0.05). The density of Myf5 positive satellite cells tended to decrease with methionine supplementation (p = 0.10), while the density of Pax7 expressing cells tended to increase (p = 0.09). These results indicate that encapsulated methionine supplementation may influence markers of skeletal muscle growth, and potential improvements in the LM area may exist.

19.
Animals (Basel) ; 11(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923260

ABSTRACT

The objective of this study was to evaluate the addition of cane molasses during a 60 day dry period on performance and metabolism of Holstein cows during prepartum and postpartum periods. For experiment 1, 26 primiparous and 28 multiparous cows were used. Upon freshening, all cows were offered a common lactation diet. For experiment 2, six multiparous cows fitted with rumen cannulas were used to measure performance and metabolism, following the same protocol as experiment 1. Ruminal propionate increased by 10% during both prepartum and postpartum periods; however, papillae area was greater for cows not fed molasses, and volatile fatty acids (VFA) absorption from the rumen was not increased, resulting in similar glucagon-like-peptide-2 receptor (GLP-2R) density. The improved dry matter intake, when molasses was added into prepartum diets, translated into increased milk yield and energy-corrected milk (ECM) in Experiment 1 only for multiparous cows. For experiment 2, the improvement on milk performance was also observed, where cows fed molasses had 18.5% greater ECM production. Feeding molasses during a 60 day dry period positively influenced transition cow performance, and it was not accompanied by changes in rumen morphometrics; however, this indicates enhanced adaptation by the rumen epithelium based on similar capabilities for VFA absorption.

20.
J Anim Sci ; 99(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33693597

ABSTRACT

A randomized complete block design experiment with 30 yearling crossbred steers (average BW = 436.3 ± 39.8 kg) fed a steam-flaked corn-based diet was used to evaluate the effects dietary vitamin A (Rovimix A 1000; DSM Nutritional Products Ltd., Sisseln, SUI) supplementation on myogenic gene expression and skeletal muscle fiber characteristics during the finishing phase. Steers were blocked by BW (n = 5 blocks; 6 steers/block), randomly assigned to pens (n = 2 steers/pen), and one of the following treatments: no added vitamin A (0 IU; 0.0 IU/kg of dietary dry matter intake of additional vitamin A), vitamin A supplemented at the estimated requirement (2,200 IU; 2,200 IU/kg of dietary dry matter (DM) of additional vitamin A), and vitamin A supplemented at 5× the estimated requirement (11,000 IU; 11,000 IU/kg of dietary DM of additional vitamin A). After all treatments underwent a 91-d vitamin A depletion period, additional vitamin A was top-dressed at feeding via a ground corn carrier. Blood, longissimus muscle, and liver biopsy samples were obtained on days 0, 28, 56, 84, and 112. Biopsy samples were used for immunohistochemical and mRNA analysis. Sera and liver samples were used to monitor circulating vitamin A and true vitamin A status of the cattle. Expression for myosin heavy chain (MHC)-I diminished and rebounded (P = 0.04) over time. The intermediate fiber type, MHC-IIA, had a similar pattern of expression (P = 0.01) to that of MHC-I. On day 84, C/EBPß expression was also the greatest (P = 0.03). The pattern of PPARγ (P < 0.01) and PPARδ (P < 0.01) expression seemed to mimic that of MHC-I expression, increasing from days 84 to 112. Distribution of MHC-IIA demonstrated a change over time (P = 0.02). Muscle fiber cross-sectional area increased by day (P < 0.01) for each MHC with the notable increase between days 0 and 56. Total nuclei density decreased (P = 0.02) over time. Cells positive for only Myf5 increased (P < 0.01) in density early in the feeding period, then declined, indicating that satellite cells were fusing into fibers. The dual-positive (PAX7+Myf5) nuclei also peaked (P < 0.01) around day 56 then declined. These data indicated that gene expression associated with oxidative proteins may be independent of vitamin A status in yearling cattle.


Subject(s)
Animal Feed , Vitamin A , Animal Feed/analysis , Animals , Body Composition , Cattle , Diet/veterinary , Dietary Supplements/analysis , Gene Expression , Muscle Fibers, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...