Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (171)2021 05 01.
Article in English | MEDLINE | ID: mdl-33999020

ABSTRACT

The ocular surface was once considered immune privileged and abiotic, but recently it appears that there is a small, but persistent commensal presence. Identification and monitoring of bacterial species at the ocular mucosa have been challenging due to their low abundance and limited availability of appropriate methodology for commensal growth and identification. There are two standard approaches: culture based or DNA sequencing methods. The first method is problematic due to the limited recoverable bacteria and the second approach identifies both live and dead bacteria leading to an aberrant representation of the ocular space. We developed a robust and sensitive method for bacterial isolation by building upon standard microbiological culturing techniques. This is a swab-based technique, utilizing an "in-lab" made thin swab that targets the lower conjunctiva, followed by an amplification step for aerobic and facultative anaerobic genera. This protocol has allowed us to isolate and identify conjunctival species such as Corynebacterium spp., Coagulase Negative Staphylococcus spp., Streptococcus spp., etc. The approach is suitable to define commensal diversity in mice under different disease conditions.


Subject(s)
Bacteria , Conjunctiva , Animals , Bacteria/genetics , Mice , Sequence Analysis, DNA , Streptococcus
2.
Front Immunol ; 11: 547, 2020.
Article in English | MEDLINE | ID: mdl-32318063

ABSTRACT

Why ocular mucosa is paucibacterial is unknown. Many different mechanisms have been suggested but the comprehensive experimental studies are sparse. We found that a deficiency in L-plastin (LCP1), an actin bundling protein, resulted in an ocular commensal overgrowth, characterized with increased presence of conjunctival Streptococcal spp. The commensal overgrowth correlated with susceptibility to P. aeruginosa-induced keratitis. L-plastin knock-out (KO) mice displayed elevated bacterial burden in the P. aeruginosa-infected corneas, altered inflammatory responses, and compromised bactericidal activity. Mice with ablation of LPL under the LysM Cre (LysM. CreposLPLfl/fl ) and S100A8 Cre (S100A8.CreposLPLfl/fl ) promoters had a similar phenotype to the LPL KOs mice. In contrast, infected CD11c.CreposLPLfl/fl mice did not display elevated susceptibility to infection, implicating the myeloid L-plastin-sufficient cells (e.g., macrophages and neutrophils) in maintaining ocular homeostasis. Mechanistically, the elevated commensal burden and the susceptibility to infection were linked to defects in neutrophil frequencies at steady state and during infection and compromised bactericidal activities upon priming. Macrophage exposure to commensal organisms primed neutrophil responses to P. aeruginosa, augmenting PMN bactericidal capacity in an L-plastin dependent manner. Cumulatively, our data highlight the importance of neutrophils in controlling ocular paucibacteriality, reveal molecular and cellular events involved in the process, and suggest a link between commensal exposure and resistance to infection.


Subject(s)
Eye/immunology , Keratitis/immunology , Microfilament Proteins/immunology , Neutrophils/immunology , Animals , Female , Male , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL