Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37196654

ABSTRACT

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Animals , Facies , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Drosophila , Intellectual Disability/pathology , Jumonji Domain-Containing Histone Demethylases/genetics
2.
HGG Adv ; 4(2): 100181, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36785559

ABSTRACT

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Humans , Usher Syndromes/diagnosis , RNA Precursors , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Whole Genome Sequencing , Extracellular Matrix Proteins/genetics
3.
Biomolecules ; 12(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35204720

ABSTRACT

Pathogenic missense variants in COCH are associated with DFNA9, an autosomal dominantly inherited type of progressive sensorineural hearing loss with or without vestibular dysfunction. This study is a comprehensive overview of genotype-phenotype correlations using the PRISMA and HuGENet guidelines. Study characteristics, risk of bias, genotyping and data on the self-reported age of onset, symptoms of vestibular dysfunction, normative test results for vestibular function, and results of audiovestibular examinations were extracted for each underlying pathogenic COCH variant. The literature search yielded 48 studies describing the audiovestibular phenotypes of 27 DFNA9-associated variants in COCH. Subsequently, meta-analysis of audiometric data was performed by constructing age-related typical audiograms and by performing non-linear regression analyses on the age of onset and progression of hearing loss. Significant differences were found between the calculated ages of onset and progression of the audiovestibular phenotypes of subjects with pathogenic variants affecting either the LCCL domain of cochlin or the vWFA2 and Ivd1 domains. We conclude that the audiovestibular phenotypes associated with DFNA9 are highly variable. Variants affecting the LCCL domain of cochlin generally lead to more progression of hearing loss when compared to variants affecting the other domains. This review serves as a reference for prospective natural history studies in anticipation of mutation-specific therapeutic interventions.


Subject(s)
Extracellular Matrix Proteins , Hearing Loss, Sensorineural , Vestibular Diseases , Extracellular Matrix Proteins/genetics , Genetic Association Studies , Hearing Loss, Sensorineural/genetics , Humans , Mutation , Prospective Studies , Vestibular Diseases/genetics , Vestibular Diseases/pathology
4.
Mol Genet Metab ; 135(4): 333-341, 2022 04.
Article in English | MEDLINE | ID: mdl-35190254

ABSTRACT

Some pathogenic variants in mtDNA and nuclear DNA, affecting mitochondrial function, are associated with hearing loss. Behavioral and electrophysiological auditory performance are obtained from 62 patients, clinically diagnosed with different mitochondrial diseases (MD) using tone/speech audiometry and Auditory Brainstem Responses (ABR). Audiological variables (hearing loss type, pure tone average (PTA), interaural asymmetry, speech perception and brainstem neural conductivity) were analyzed and related to Newcastle Mitochondrial Disease Scale for Adults (NMDAS). In 35% of MDs, a mild to severe symmetrical sensorineural hearing loss (SNHL) was found. Patients with Maternally Inherited Diabetes and Deafness (MIDD) show significantly higher PTAs compared to other MDs. For all MDs, speech recognition scores were in accordance with their individual age- and gender-corrected tone audiometry, but ABR peak latencies were prolonged in patients with MIDD, Mitochondrial Encephalopathy Lactate acidosis and Stroke-like episodes (MELAS), Chronic Progressive External Ophthalmoplegia (CPEO) and Subacute necrotizing encephalopathy (Leigh). Correlations between NMDAS and audiological variables were low.


Subject(s)
Diabetes Mellitus, Type 2 , Hearing Loss, Sensorineural , Hearing Loss , Mitochondrial Diseases , Adult , Deafness , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Humans , Mitochondrial Diseases/complications , Retrospective Studies
6.
Hum Genet ; 141(3-4): 465-484, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34410491

ABSTRACT

Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Humans , Membrane Transport Proteins/genetics , Mutation , Phenotype , Sulfate Transporters/genetics , Vestibular Aqueduct/abnormalities
7.
Hum Mol Genet ; 30(19): 1785-1796, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34059922

ABSTRACT

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant is situated in a loop that might influence the binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining ES, animal modeling, immunohistology and molecular assays.


Subject(s)
Hearing Loss , Zebrafish , Animals , Hearing Loss/genetics , Humans , Hydrolases , Reflex, Startle , Ubiquitin , Ubiquitin-Specific Proteases , Zebrafish/genetics
8.
Dev Cell ; 56(10): 1526-1540.e7, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33964205

ABSTRACT

In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations. Failure to maintain microtubule bundle integrity reduced supporting cell stiffness, which in turn altered cochlear micromechanics in Gas2 mutants. Vibratory responses to sound were measured in cochleae from live mice, revealing defects in the propagation and amplification of the traveling wave in Gas2 mutants. We propose that the microtubule bundling activity of GAS2 imparts supporting cells with mechanical properties for transmitting sound energy through the cochlea.


Subject(s)
Cochlea/cytology , Cytoskeleton/metabolism , Hearing/physiology , Microfilament Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Newborn , Base Sequence , Cytoskeleton/ultrastructure , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/ultrastructure , Hearing Loss/metabolism , Hearing Loss/pathology , Hearing Loss/physiopathology , Humans , Mice, Inbred C57BL , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Microtubules/metabolism , Mutation/genetics , Protein Transport , Sound , Vibration , Exome Sequencing
9.
Otol Neurotol ; 42(4): e399-e407, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33710989

ABSTRACT

OBJECTIVE: To study the genotype and phenotype of a Dutch family with autosomal dominantly inherited hearing loss. STUDY DESIGN: Genotype-phenotype correlation study. Genetic analysis consisted of linkage analysis, variable number of tandem repeats analysis, and Sanger sequencing. Audiovestibular function was examined. Regression analysis was performed on pure tone audiometry and speech recognition scores and correlated with the age and/or level of hearing loss. SETTING: Tertiary referral center. PATIENTS: A large Dutch family presenting with sensorineural hearing loss. MAIN OUTCOME MEASURES: Identification of the underlying genetic defect of the hearing loss in this family. Results of pure tone and speech audiometry, onset age, progression of hearing loss and vestibular (dys)function. RESULTS: A novel mutation in COCH, c.1312C > T p.(Arg438Cys), cosegregates with hearing loss and a variable degree of vestibular (dys)function in this family. The reported mean age of onset of hearing loss is 33 years (range, 18-49 yr). Hearing loss primarily affects higher frequencies and its progression is relatively mild (0.8 dB/yr). Speech perception is remarkably well preserved in affected family members when compared with other DFNA9 families with different COCH mutations. CONCLUSION: These findings expand the genotypic and phenotypic spectrum of DFNA9. The c.1312C > T mutation, which affects the vWFA2 domain, causes a relatively mild audiovestibular phenotype when compared with other COCH mutations.


Subject(s)
Extracellular Matrix Proteins , Hearing Loss, Sensorineural , Adolescent , Adult , DNA Mutational Analysis , Extracellular Matrix Proteins/genetics , Hearing Loss, Sensorineural/genetics , Humans , Middle Aged , Mutation , Pedigree , Phenotype , Young Adult
10.
J Med Genet ; 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32631815

ABSTRACT

BACKGROUND: Hearing loss is one of the most prevalent disabilities worldwide, and has a significant impact on quality of life. The adult-onset type of the condition is highly heritable but the genetic causes are largely unknown, which is in contrast to childhood-onset hearing loss. METHODS: Family and cohort studies included exome sequencing and characterisation of the hearing phenotype. Ex vivo protein expression addressed the functional effect of a DNA variant. RESULTS: An in-frame deletion of 12 nucleotides in RIPOR2 was identified as a highly penetrant cause of adult-onset progressive hearing loss that segregated as an autosomal dominant trait in 12 families from the Netherlands. Hearing loss associated with the deletion in 63 subjects displayed variable audiometric characteristics and an average (SD) age of onset of 30.6 (14.9) years (range 0-70 years). A functional effect of the RIPOR2 variant was demonstrated by aberrant localisation of the mutant RIPOR2 in the stereocilia of cochlear hair cells and failure to rescue morphological defects in RIPOR2-deficient hair cells, in contrast to the wild-type protein. Strikingly, the RIPOR2 variant is present in 18 of 22 952 individuals not selected for hearing loss in the Southeast Netherlands. CONCLUSION: Collectively, the presented data demonstrate that an inherited form of adult-onset hearing loss is relatively common, with potentially thousands of individuals at risk in the Netherlands and beyond, which makes it an attractive target for developing a (genetic) therapy.

11.
Hum Genet ; 138(1): 61-72, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30535804

ABSTRACT

ATP2B2 encodes the PMCA2 Ca2+ pump that plays an important role in maintaining ion homeostasis in hair cells among others by extrusion of Ca2+ from the stereocilia to the endolymph. Several mouse models have been described for this gene; mice heterozygous for loss-of-function defects display a rapidly progressive high-frequency hearing impairment. Up to now ATP2B2 has only been reported as a modifier, or in a digenic mechanism with CDH23 for hearing impairment in humans. Whole exome sequencing in hearing impaired index cases of Dutch and Polish origins revealed five novel heterozygous (predicted to be) loss-of-function variants of ATP2B2. Two variants, c.1963G>T (p.Glu655*) and c.955delG (p.Ala319fs), occurred de novo. Three variants c.397+1G>A (p.?), c.1998C>A (p.Cys666*), and c.2329C>T (p.Arg777*), were identified in families with an autosomal dominant inheritance pattern of hearing impairment. After normal newborn hearing screening, a rapidly progressive high-frequency hearing impairment was diagnosed at the age of about 3-6 years. Subjects had no balance complaints and vestibular testing did not yield abnormalities. There was no evidence for retrocochlear pathology or structural inner ear abnormalities. Although a digenic inheritance pattern of hearing impairment has been reported for heterozygous missense variants of ATP2B2 and CDH23, our findings indicate a monogenic cause of hearing impairment in cases with loss-of-function variants of ATP2B2.


Subject(s)
Biomarkers/analysis , Genetic Predisposition to Disease , Hearing Loss/genetics , Mutation , Plasma Membrane Calcium-Transporting ATPases/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Follow-Up Studies , Heterozygote , Humans , Male , Middle Aged , Pedigree , Prognosis , Young Adult
12.
Ann Otol Rhinol Laryngol ; 125(5): 378-84, 2016 May.
Article in English | MEDLINE | ID: mdl-26631764

ABSTRACT

OBJECTIVE: To improve the estimation of the perceived pitch in a single-sided deaf cochlear implant (CI) listener by using accurate 3-dimensional (3D) image analysis of the cochlear electrode positions together with the predicted tonotopical function for humans. METHODS: An SSD CI user underwent a Cone-Beam computed tomography (CBCT) scan. Electrode contacts were marked in 3D space in relation to the nearest point on the cochlear lateral wall. Distance to the base of the lateral wall was calculated and plotted against the place-pitch function for humans. An adaptive procedure was used to elicit the perceived pitch of electrically evoked stimulation by matching it with a contralateral acoustic pitch. RESULTS: The electrically evoked pitch percept matched well with the calculated frequency. The median mismatch in octaves was 0.12 for our method in comparison to 0.69 using the conventional Stenvers view. CONCLUSION: A method of improved image analysis is described that can be used to predict the pitch percept on corresponding cochlear electrode positions. This method shows the potential of 3D imaging in CI fitting optimization.


Subject(s)
Cochlear Implants , Cone-Beam Computed Tomography/methods , Hearing Loss, Sensorineural/diagnostic imaging , Imaging, Three-Dimensional , Pitch Discrimination/physiology , Acoustic Stimulation , Female , Hearing Loss, Sensorineural/physiopathology , Hearing Loss, Sensorineural/surgery , Humans , Middle Aged , Persons With Hearing Impairments
SELECTION OF CITATIONS
SEARCH DETAIL