Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 37(30): 4110-4121, 2018 07.
Article in English | MEDLINE | ID: mdl-29706656

ABSTRACT

Glioblastoma (GBM) is the most aggressive and an incurable type of brain cancer. Human cytomegalovirus (HCMV) DNA and encoded proteins, including the chemokine receptor US28, have been detected in GBM tumors. US28 displays constitutive activity and is able to bind several human chemokines, leading to the activation of various proliferative and inflammatory signaling pathways. Here we show that HCMV, through the expression of US28, significantly enhanced the growth of 3D spheroids of U251- and neurospheres of primary glioblastoma cells. Moreover, US28 expression accelerated the growth of glioblastoma cells in an orthotopic intracranial GBM-model in mice. We developed highly potent and selective US28-targeting nanobodies, which bind to the extracellular domain of US28 and detect US28 in GBM tissue. The nanobodies inhibited chemokine binding and reduced the constitutive US28-mediated signaling with nanomolar potencies and significantly impaired HCMV/US28-mediated tumor growth in vitro and in vivo. This study emphasizes the oncomodulatory role of HCMV-encoded US28 and provides a potential therapeutic approach for HCMV-positive tumors using the nanobody technology.


Subject(s)
Brain Neoplasms/genetics , Cell Proliferation/genetics , Cytomegalovirus/genetics , Glioblastoma/genetics , Receptors, Chemokine/genetics , Viral Proteins/genetics , Animals , Brain Neoplasms/pathology , COS Cells , Cell Line , Chlorocebus aethiops , Female , Glioblastoma/pathology , HEK293 Cells , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Receptors, Virus/genetics , Signal Transduction/genetics
2.
Cell Signal ; 28(6): 595-605, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26931381

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes the constitutively active G protein-coupled receptor ORF74, which is expressed on the surface of infected host cells and has been linked to the development of the angioproliferative tumor Kaposi's sarcoma. Furthermore, the insulin-like growth factor (IGF)-1 receptor, a receptor tyrosine kinase, also plays an essential role in Kaposi's sarcoma growth and survival. In this study we examined the effect of the constitutively active viral receptor ORF74 on human IGF-1R signaling. Constitutive and CXCL1-induced ORF74 signaling did not transactivate IGF-1R. In contrast, IGF-1 stimulated phospholipase C (PLC) activation in an ORF74-dependent manner without affecting chemokine binding to ORF74. Inhibition of constitutive ORF74 activity by mutagenesis or the inverse agonist CXCL10, or neutralizing IGF-1R with an antibody or silencing IGF-1R expression using siRNA inhibited PLC activation by IGF-1. Transactivation of ORF74 in response to IGF-1 occurred independently of Src, PI3K, and secreted ORF74 ligands. Furthermore, tyrosine residues in the carboxyl-terminus and intracellular loop 2 of ORF74 are not essential for IGF-1-induced PLC activation. Interestingly, PLC activation in response to IGF-1 is specific for ORF74 as IGF-1 was unable to activate PLC in cells expressing the constitutively active human cytomegalovirus (HCMV)-encoded GPCR US28. Interestingly, IGF-1 does not induce ß-arrestin recruitment to ORF74. The proximity ligation assay revealed close proximity between ORF74 and IGF-1R on the cell surface, but a physical interaction was not confirmed by co-immunoprecipitation. Unmasking IGF-1R signaling to PLC in response to IGF-1 is a previously unrecognized action of ORF74.


Subject(s)
Receptor, IGF Type 1/metabolism , Receptors, Chemokine/metabolism , Signal Transduction , Type C Phospholipases/metabolism , Viral Proteins/metabolism , HEK293 Cells , Humans , Insulin-Like Growth Factor I/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptor, IGF Type 1/chemistry , Tyrosine/metabolism
3.
Lancet Infect Dis ; 13(10): 859-66, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23933067

ABSTRACT

BACKGROUND: A new betacoronavirus-Middle East respiratory syndrome coronavirus (MERS-CoV)-has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. METHODS: We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. FINDINGS: 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. INTERPRETATION: MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. FUNDING: European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Camelus/blood , Coronavirus/classification , Coronavirus/immunology , Animals , Camelids, New World/blood , Cattle/blood , Female , Goats/blood , Humans , Immunoglobulin G/blood , Male , Sheep/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...