Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 109(8): 083002, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002743

ABSTRACT

We present an ellipticity-resolved study of momentum distributions arising from strong-field ionization of helium. The influence of the ion potential on the departing electron is considered within a semiclassical model consisting of an initial tunneling step and subsequent classical propagation. We find that the momentum distribution can be explained by including the longitudinal momentum spread of the electron at the exit from the tunnel. Our combined experimental and theoretical study provides an estimate of this momentum spread.

2.
J Phys Chem A ; 115(25): 6936-41, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21413773

ABSTRACT

We Coulomb explode argon and neon dimers, trimers, and tetramers by multiple ionization in an ultrashort 800 nm laser pulse. By measuring all momentum vectors of the singly charged ions in coincidence, we determine the ground state nuclear wave function of the dimer, trimer, and tetramer. Furthermore we retrieve the bond angles of the trimer in position space by applying a classical numerical simulation. For the argon and neon trimer, we find a structure close to the equilateral triangle. The width of the distribution around the equilateral triangle is considerably wider for neon than for argon.

3.
Opt Express ; 18(17): 17640-50, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20721150

ABSTRACT

Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result.


Subject(s)
Light , Models, Theoretical , Optics and Photonics/methods , Quantum Theory , Computer Simulation , Lasers , Time Factors
4.
Phys Rev Lett ; 102(12): 123002, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19392273

ABSTRACT

Few-photon multiple ionization of N2 was studied differentially in a reaction microscope using 44 eV, approximately 25 fs, intense ( approximately 10(13) W/cm(2)) photon pulses from FLASH. Sequential ionization is observed to dominate. For various intermediate charge states N(2)(n+0 we find a considerable excess of photons absorbed compared to the minimum number that would energetically be required. Photoionization of aligned N(2)(n+) ions, produced by photon absorption in sequential steps, is explored and few-photon absorption pathways are traced by inspecting kinetic energy releases and fragment-ion angular distributions.

5.
Phys Rev Lett ; 101(7): 073003, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18764529

ABSTRACT

Recoil-ion momentum distributions for two-photon double ionization of He and Ne (variant Planck's over omega=44 eV) have been recorded with a reaction microscope at FLASH (the free-electron laser at Hamburg) at an intensity of approximately 1 x 10(14) W/cm2 exploring the dynamics of the two fundamental two-photon-two-electron reaction pathways, namely, sequential and direct (or nonsequential) absorption of the photons. We find strong differences in the recoil-ion momentum patterns for the two mechanisms pointing to the significantly different two-electron emission dynamics and thus provide serious constraints for theoretical models.

6.
Phys Rev Lett ; 100(13): 133005, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18517946

ABSTRACT

We investigate single-photon double ionization of H(2) by 130 to 240 eV circularly polarized photons. We find a double slitlike interference pattern in the sum momentum of both electrons in the molecular frame which survives integration over all other degrees of freedom. The difference momentum and the individual electron momentum distributions do not show such a robust interference pattern. We show that this interference results from a non-Heitler-London fraction of the H(2) ground state where both electrons are at the same atomic center.

7.
Phys Rev Lett ; 92(21): 213002, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15245277

ABSTRACT

We have investigated the full three-dimensional momentum correlation between the electrons emitted from strong field double ionization of neon when the recollision energy of the first electron is on the order of the ionization potential. The momentum correlation in the direction perpendicular to the laser field depends on the time difference of the two electrons leaving the ion. Our results are consistent with double ionization proceeding through transient double excited states that field ionize.

8.
Phys Rev Lett ; 91(12): 123004, 2003 Sep 19.
Article in English | MEDLINE | ID: mdl-14525359

ABSTRACT

We have investigated the momentum balance between the two electrons from strong field double ionization of argon at 780 nm and 1.9 x 10(14) W/cm(2). Experimental data show that perpendicular to the laser polarization direction the electrons emerge preferentially in opposite directions. Results of model calculations are found to agree well with the data and reveal a dominant role of the Coulomb correlation between the two outgoing electrons in this kinematical geometry. Differences between the experimental observations and the theoretical results for the ion momentum distribution indicate the importance of the further effects during the three-body breakup.

9.
Immunology ; 48(3): 439-52, 1983 Mar.
Article in English | MEDLINE | ID: mdl-6186596

ABSTRACT

Mast cell differentiation was generated in the following three experimental situations: (i) infection of mice with Schistosoma Mansoni or with Nippostrongylus brasiliensis and growth of the lymph node cells in the presence of the corresponding helminth antigen; (ii) immunization with horse serum and growth of blood and lymph node cells in the presence of the horse serum; (iii) exposure of T-cell-depleted suspensions of lymph node cells from unimmunized mice to T-cell factor (TCF) released into medium of the young cultures of (i) and (ii). This differentiation was also obtained when lymph node cells from athymic nude mice were exposed to TCF. The cell suspensions were plated on X-irradiated fibroblast monolayers prepared from embryonic mouse skin. Screening of the suspensions before plating on the fibroblasts in culture revealed no young forms of mast cells, and none were present in culture of nude mice lymph node cells maintained without TCF. Primordial appearance of metachromatic granules generally in the golgi zone was first seen in many 'large lymphoid cells' as early as 18 hr after plating. This was followed by increase in the cytoplasm volume, increase in granule number and mitosis, ending at 10-18 days with homogeneous populations of mature mast cells. When the mesenteric lymph node cells from mice infected with the helminths were grown in the absence of fibroblasts but in the presence of the antigen, homogeneous populations of cells with extended cytoplasm, filled with unstained vacuoles developed during days 7-13. These cells did not contain histamine (or at most 0.2 microgram per 10(6) vacuolated cells). When these cells were plated on fibroblast monolayers clear granule formation in all the vacuoles was seen 2 days later. It increased progressively in size and staining intensity, until the vacuoles transformed into typical mast cell granules. By the fourth day the vacuolated cells attained the typical mast cell morphology and the histamine content greatly increased (from 0.12 microgram per 10(6) vacuolated cells to 3.02 micrograms per 10(6) mast cells). These mast cells were readily degranulated by monoclonal anti-DNP-BSA IgE, and the antigen, releasing 90% of the histamine. The study shows that mucosal mast cells formation from 'large lymphoid-like' cells present in the blood and in the lymph, is stimulated by TCF. The condensation of the metachromatic material and histamine synthesis depends on other cells, presumably fibroblasts which comprise the principal cell in the embryonic skin monolayers. The mechanism of the fibroblast influence is not yet known.


Subject(s)
Cytoplasmic Granules/metabolism , Fibroblasts/physiology , Histamine/biosynthesis , Mast Cells/cytology , T-Lymphocytes/physiology , Animals , Cell Differentiation , Cells, Cultured , Female , Histamine Release , Immunoglobulin E/physiology , Lymph Nodes/cytology , Male , Mast Cells/metabolism , Mice , Mice, Inbred BALB C , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...