Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35631324

ABSTRACT

Humoral immunity to influenza neuraminidase (NA) was evaluated among different groups of people including patients with acute influenza infection and healthy people in different age groups using an enzyme linked lectin assay (ELLA). The amino acid composition of NA of seasonal influenza viruses A/Victoria/361/2011(H3N2) and A/Hong Kong/4801/2014(H3N2) differed by 2%, while cross-reacting neuraminidase-inhibiting (NI) antibodies to them in the same serum samples were detected in 10% of cases. Middle-aged patients born from 1977 to 2000 had a high level of hemagglutination-inhibiting (HI) antibodies to A/Hong Kong/4801/2014(H3N2), but almost no NI antibodies, which may indicate that in the case of a change in the hemagglutinin (HA) subtype, this age group will be susceptible to influenza A/H3N2 viruses. Therefore, it could mean there is a need for priority vaccination of this age group with a vaccine against the appropriate strain. It was shown that after intranasal administration of live influenza vaccine (LAIV) for the 2017-2018 season, serum antibody response was not lower compared to that during natural infection. In older people, antibodies to archival A/H2N2 viruses were detected more often than to modern A/H3N2. Since the conversion of antibodies to HA and NA often did not coincide, antibodies to NA can serve as an additional criterion for assessing the immunogenicity of influenza vaccines.

2.
Antibodies (Basel) ; 9(2)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485797

ABSTRACT

BACKGROUND: Currently, the immunogenicity of influenza vaccines is assessed by detecting an increase of hemagglutination inhibition (HI) antibodies. As neuraminidase (NA)-based immunity may be significant in protecting against influenza infection, detection of neuraminidase inhibiting (NI) antibodies may improve the assessment of the immunogenicity of influenza vaccines. METHODS: We investigated the immune response to NA in people after immunization with live influenza vaccines (LAIVs). A number of A/H7NX or A/H6NX viruses were used to detect NI antibodies, using an enzyme-linked lectin assay (ELLA). RESULTS: Seasonal LAIV immunization stimulated an increase in NI antibodies not only to homologous A/H1N1 influenza, but also to A/H1N1pdm09 and A/H5N1 influenza. After A/17/California/09/38 (H1N1) pdm09 LAIV vaccination, there was no statistical relationship between post-vaccinated antibody seroconversion and two surface glycoproteins in serum samples obtained from the same individuals (p = 0.24). Vaccination with LAIV of H5N2, H2N2, H7N3, and H7N9 subtypes led to 7%-29.6% NI antibody seroconversions in the absence of HI antibody conversions. There was relatively low coordination of hemagglutinin (HA) and NA antibody responses (r = 0.24-0.59). CONCLUSIONS: The previously noted autonomy for HI and NI immune responses was confirmed when assessing the immunogenicity of LAIVs. Combining the traditional HI test with the detection of NI antibodies can provide a more complete assessment of LAIV immunogenicity.

3.
Infect Genet Evol ; 64: 95-104, 2018 10.
Article in English | MEDLINE | ID: mdl-29929009

ABSTRACT

Live attenuated influenza vaccines (LAIVs) are promising tools for the induction of broad protection from influenza due to their ability to stimulate cross-reactive T cells against influenza pathogens. One of the major targets for cytotoxic T-cell immunity is viral nucleoprotein (NP), which is relatively conserved among antigenically distant influenza viruses. Nevertheless, a diversity of epitope composition has been found in the NP protein of different lineages of influenza A viruses. The H2N2 master donor virus which is currently used as a backbone for the LAIV and donor of the six genomic segments encoding the internal proteins, A/Leningrad/134/17/57 (MDV Len/17), was isolated 60 years ago. As such, NP-specific T-cell immunity induced upon vaccination with classical LAIVs with a 6:2 genome composition containing this older NP might be suboptimal against currently circulating influenza viruses. In this study, a panel of H3N2 LAIV candidates with wild-type NP genes derived from circulating viruses were generated by reverse genetics (5:3 genome composition). These viruses displayed the cold adaptation and temperature sensitivity phenotypes of MDV Len/17 in vitro. LAIVs with both 6:2 and 5:3 genome compositions were attenuated and replicated to a similar extent in the upper respiratory tract of ferrets. LAIVs were immunogenic as high neutralizing and hemagglutination inhibition serum antibody titers were detected 21 days after infection. All vaccinated animals were protected against infection with heterologous H3N2 influenza A viruses. Thus, LAIV with a 5:3 genome composition is safe, immunogenic and can induce cross-protective immunity.


Subject(s)
Animal Diseases/prevention & control , Immunogenicity, Vaccine , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Nucleoproteins/immunology , Orthomyxoviridae Infections/veterinary , Vaccines, Attenuated/immunology , Animal Diseases/immunology , Animal Diseases/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal , Female , Ferrets , Genome, Viral , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/adverse effects , Influenza Vaccines/genetics , Male , Neutralization Tests , Nucleoproteins/genetics , Vaccination , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics
4.
PLoS One ; 13(5): e0196771, 2018.
Article in English | MEDLINE | ID: mdl-29742168

ABSTRACT

The main objective of the study was to evaluate neuraminidase inhibiting (NI) antibodies against A/H1N1pdm09 influenza viruses in the community as a whole and after infection. We evaluated NI serum antibodies against A/California/07/09(H1N1)pdm and A/South Africa/3626/2013(H1N1)pdm in 134 blood donors of different ages using enzyme-linked lectin assay and in 15 paired sera from convalescents with laboratory confirmed influenza. The neuraminidase (NA) proteins of both A/H1N1pdm09 viruses had minimal genetic divergence, but demonstrated different enzymatic and antigenic properties. 5.2% of individuals had NI antibody titers ≥1:20 against A/South Africa/3626/2013(H1N1)pdm compared to 53% of those who were positive to A/California/07/2009(H1N1)pdm NA. 2% of individuals had detectable NI titers against A/South Africa/3626/13(H1N1)pdm and 47.3% were positive to A/California/07/2009(H1N1)pdm NA among participants negative to hemagglutinin (HA) of A/H1N1pdm09 but positive to seasonal A/H1N1. The lowest NI antibody levels to both A/H1N1pdm09 viruses were detected in individuals born between 1956 and 1968. Our data suggest that NI antibodies against A/South Africa/3626/13 (H1N1)pdm found in the blood donors could have resulted from direct infection with a new antigenic A/H1N1pdm09 variant rather than from cross-reaction as a result of contact with previously circulating seasonal A/H1N1 variants. The immune responses against HA and NA were formed simultaneously right after natural infection with A/H1N1pdm09. NI antibodies correlated with virus-neutralizing antibodies when acquired shortly after influenza infection. A group of middle-aged patients with the lowest level of anti-NA antibodies against A/California/07/2009 (H1N1)pdm was identified, indicating the highest-priority vaccination against A/H1N1pdm09 viruses.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , HN Protein/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/virology , Neuraminidase/immunology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Female , HN Protein/chemistry , Humans , Immunity, Herd , Influenza, Human/epidemiology , Influenza, Human/immunology , Male , Middle Aged , Models, Molecular , Neuraminidase/chemistry , Pandemics , Phylogeny , Protein Conformation , Sequence Alignment , Young Adult
5.
Virology ; 518: 313-323, 2018 05.
Article in English | MEDLINE | ID: mdl-29574336

ABSTRACT

The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children.


Subject(s)
Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Animals , Cross Protection , Disease Models, Animal , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunoglobulin G/blood , Influenza Vaccines/administration & dosage , Mice , Orthomyxoviridae Infections/prevention & control , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
6.
PLoS One ; 12(7): e0180497, 2017.
Article in English | MEDLINE | ID: mdl-28686625

ABSTRACT

Live attenuated influenza vaccines (LAIVs) are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW) specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments.


Subject(s)
Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae/genetics , Vaccines, Attenuated/therapeutic use , Genotype , Humans , Immunization , Influenza Vaccines/genetics , Influenza, Human/genetics , Influenza, Human/virology , Nasopharynx/virology , Orthomyxoviridae/pathogenicity , Russia , Vaccines, Attenuated/genetics , Virus Replication/genetics
7.
Virology (Auckl) ; 8: 1178122X17710949, 2017.
Article in English | MEDLINE | ID: mdl-28615930

ABSTRACT

We investigate the protective effect of combined vaccination based on live attenuated influenza vaccine (LAIV) and group B streptococcus (GBS) recombinant polypeptides against potential pandemic H7N9 influenza infection followed by GBS burden. Mice were intranasally immunized using 107 50% egg infectious dose (EID50) of H7N3 LAIV, the mix of the 4 GBS peptides (group B streptococcus vaccine [GBSV]), or combined LAIV + GBSV vaccine. The LAIV raised serum hemagglutination-inhibition antibodies against H7N9 in higher titers than against H7N3. Combined vaccination provided advantageous protection against infections with A/Shanghai/2/2013(H7N9)CDC-RG influenza and serotype II GBS. Combined vaccine significantly improved bacterial clearance from the lungs after infection compared with other vaccine groups. The smallest lung lesions due to combined LAIV + GBSV vaccination were associated with a prevalence of lung interferon-γ messenger RNA expression. Thus, combined viral and bacterial intranasal immunization using H7N3 LAIV and recombinant bacterial polypeptides induced balanced adaptive immune response, providing protection against potential pandemic influenza H7N9 and bacterial complications.

8.
Biomed Res Int ; 2017: 9359276, 2017.
Article in English | MEDLINE | ID: mdl-28210631

ABSTRACT

Since conserved viral proteins of influenza virus, such as nucleoprotein (NP) and matrix 1 protein, are the main targets for virus-specific CD8+ cytotoxic T-lymphocytes (CTLs), we hypothesized that introduction of the NP gene of wild-type virus into the genome of vaccine reassortants could lead to better immunogenicity and afford better protection. This paper describes in vitro and in vivo preclinical studies of two new reassortants of pandemic H1N1 live attenuated influenza vaccine (LAIV) candidates. One had the hemagglutinin (HA) and neuraminidase (NA) genes from A/South Africa/3626/2013 H1N1 wild-type virus on the A/Leningrad/134/17/57 master donor virus backbone (6 : 2 formulation) while the second had the HA, NA, and NP genes of the wild-type virus on the same backbone (5 : 3 formulation). Although both LAIVs induced similar antibody immune responses, the 5 : 3 LAIV provoked greater production of virus-specific CTLs than the 6 : 2 variant. Furthermore, the 5 : 3 LAIV-induced CTLs had higher in vivo cytotoxic activity, compared to 6 : 2 LAIV. Finally, the 5 : 3 LAIV candidate afforded greater protection against infection and severe illness than the 6 : 2 LAIV. Inclusion in LAIV of the NP gene from wild-type influenza virus is a new approach to inducing cross-reactive cell-mediated immune responses and cross protection against pandemic influenza.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/classification , Influenza Vaccines/immunology , Neuraminidase/immunology , Nucleoproteins/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza Vaccines/genetics , Influenza Vaccines/therapeutic use , Mice , Neuraminidase/genetics , Neuraminidase/therapeutic use , Nucleoproteins/genetics , Nucleoproteins/therapeutic use , Vaccines, Attenuated/immunology , Vaccines, Attenuated/therapeutic use
9.
Virology ; 500: 209-217, 2017 01.
Article in English | MEDLINE | ID: mdl-27829176

ABSTRACT

This study sought to improve an existing live attenuated influenza vaccine (LAIV) by including nucleoprotein (NP) from wild-type virus rather than master donor virus (MDV). H7N9 LAIV reassortants with 6:2 (NP from MDV) and 5:3 (NP from wild-type virus) genome compositions were compared with regard to their growth characteristics, induction of humoral and cellular immune responses in mice, and ability to protect mice against homologous and heterologous challenge viruses. Although, in general, the 6:2 reassortant induced greater cell-mediated immunity in C57BL6 mice than the 5:3 vaccine, mice immunized with the 5:3 LAIV were better protected against heterologous challenge. The 5:3 LAIV-induced CTLs also had better in vivo killing activity against target cells loaded with the NP366 epitope of recent influenza viruses. Modification of the genome of reassortant vaccine viruses by incorporating the NP gene from wild-type viruses represents a simple strategy to improve the immunogenicity and cross-protection of influenza vaccines.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza Vaccines/immunology , Influenza, Human/immunology , Nucleoproteins/immunology , Vaccines, Attenuated/immunology , Animals , Antibodies, Viral/immunology , Cold Temperature , Cross Protection , Female , Humans , Immunity, Cellular , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/virology , Mice , Mice, Inbred C57BL , Nucleoproteins/administration & dosage , Nucleoproteins/genetics , Reassortant Viruses/immunology , Reassortant Viruses/pathogenicity , Reassortant Viruses/physiology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Virulence
10.
Open Microbiol J ; 10: 168-175, 2016.
Article in English | MEDLINE | ID: mdl-27867430

ABSTRACT

BACKGROUND: Secondary bacterial influenza complications are a common cause of excesses morbidity and mortality, which determines the need to develop means for specific prophylaxis. Group B streptococcal infection is especially common cause of pneumonia among children and the elderly with underlying conditions. Here we investigate in a mouse model the effects of combined intranasal immunization using live attenuated influenza vaccine and recombinant polypeptides based on group B Streptococcus surface proteins. METHODS: Groups of outbred mice received two doses of the following preparations: 1) the reassortant A/17/Mallard/Netherlands/00/95 (H7N3) influenza virus; 2) a mixture of P6, ScaAB, ScpB1 and Stv recombinant GBS proteins (20 µg total); 3) the A(H7N3) influenza vaccine pooled with the four bacterial peptide preparation; 4) control animals were treated with PBS. RESULTS: Intranasal vaccination using LAIV in combination with GBS polypeptides provided advantageous protection against infections with homologous A/Mallard/Netherlands/12/00 (H7N3) wild type virus or heterologous A/Puerto Rico/8/34 (H1N1) followed by serotype II GBS infection. Also, combined vaccination improved bacterial clearance from the lungs of mice. CONCLUSION: Intranasal immunization with LAIV+GBSV was safe and enabled to induce the antibody response to each of vaccine components. Thus, the combined vaccine increased the protective effect against influenza and its bacterial complications in mice compared to LAIV-only.

11.
Mol Ther ; 24(5): 991-1002, 2016 05.
Article in English | MEDLINE | ID: mdl-26796670

ABSTRACT

Avian influenza viruses continue to cross the species barrier, and if such viruses become transmissible among humans, it would pose a great threat to public health. Since its emergence in China in 2013, H7N9 has caused considerable morbidity and mortality. In the absence of a universal influenza vaccine, preparedness includes development of subtype-specific vaccines. In this study, we developed and evaluated in ferrets an intranasal live attenuated influenza vaccine (LAIV) against H7N9 based on the A/Leningrad/134/17/57 (H2N2) cold-adapted master donor virus. We demonstrate that the LAIV is attenuated and safe in ferrets and induces high hemagglutination- and neuraminidase-inhibiting and virus-neutralizing titers. The antibodies against hemagglutinin were also cross-reactive with divergent H7 strains. To assess efficacy, we used an intratracheal challenge ferret model in which an acute severe viral pneumonia is induced that closely resembles viral pneumonia observed in severe human cases. A single- and two-dose strategy provided complete protection against severe pneumonia and prevented virus replication. The protective effect of the two-dose strategy appeared better than the single dose only on the microscopic level in the lungs. We observed, however, an increased lymphocytic infiltration after challenge in single-vaccinated animals and hypothesize that this a side effect of the model.


Subject(s)
Bronchopneumonia/prevention & control , Influenza A Virus, H7N9 Subtype/physiology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/administration & dosage , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Bronchopneumonia/immunology , Disease Models, Animal , Female , Ferrets , Humans , Influenza A Virus, H7N9 Subtype/drug effects , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Vaccines, Attenuated/immunology , Virus Replication/drug effects
12.
BMC Res Notes ; 8: 136, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25889924

ABSTRACT

BACKGROUND: Pre-existing antibodies to influenza virus neuraminidase may provide protection against infection influenza viruses containing novel hemagglutinin (HA). The aim of our study was to evaluate serum neuraminidase-inhibiting (NI) antibodies against А/California/07/2009(H1N1) [H1N1/2009pdm] and А/New Caledonia/20/1999(H1N1) [H1N1/1999] influenza viruses in relation with the age of participants and hemagglutination-inhibition (HI) antibody levels. Anti-H1N1/2009pdm neuraminidase and anti-H1N1/1999 neuraminidase antibody levels were measured in total 219 serum samples from Russian healthy peoples of various ages examined before and a year after pandemic strain appearance. We adjusted peroxidase-linked lectin micro-procedure to measure NI antibody titers using the reassortant A/H7N1 influenza viruses based on A/equine/Prague/1/56(H7N7). Also, HI antibody titers were estimated against H1N1/2009pdm, H1N1/1999 and a panel of seasonal A/H1N1 influenza viruses. RESULTS: In sera samples collected during the fall of 2010, mean titers of specific HI and NI antibodies to H1N1/2009pdm were 2-2.1 times lower than antibody levels against H1N1/1999. Of the 163 individuals examined, 58 (35.6%) had NI anti-H1N1/2009pdm antibody titers > 1:20, compared to 93 (57.1%) who had NI anti-H1N1/1999 antibody titers > 1:20. There were low correlations between HI and NI antibody levels against either H1N1/1999 or H1N1/2009pdm in the same serum samples. The 24 adults born between 1957 and 1977 expressed very low levels of NI antibodies to A/H1N1 influenza viruses. Persons with low HI anti-H1N1/2009pdm titers but positive to seasonal A/H1N1 demonstrated significantly higher NI anti-A/H1N1 antibody titers than unexposed subjects. In 2005 cross-reactive NI anti-H1N1/2009pdm antibody titers > 1:20 were detected among 7.1% of young people. CONCLUSIONS: Our study confirmed that contact with seasonal influenza viruses may have contributed to generating the cross-reacting anti-H1N1/2009pdm NI antibodies which were detected in the sera of 18-20 years old people examined before the pandemic virus active circulation. The lowest levels of antibodies to the neuraminidase of N1 subtype were in the group of participants born during the circulation of influenza A/H2N2 or A/H3N2 viruses. The low correlation between HI and NI antibody titers suggests that NI antibody detection can be used as an additional test to evaluate the immune response after influenza infections or immunizations.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Immunity, Humoral , Influenza, Human/blood , Neuraminidase/immunology , Adolescent , Adult , Child , Cross Protection , Cross Reactions , Female , Healthy Volunteers , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H2N2 Subtype/genetics , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N1 Subtype/genetics , Influenza A Virus, H7N1 Subtype/immunology , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Male , Middle Aged , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Russia , Viral Proteins/immunology , Young Adult
13.
Hum Vaccin Immunother ; 11(4): 970-82, 2015.
Article in English | MEDLINE | ID: mdl-25831405

ABSTRACT

H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses.


Subject(s)
Influenza A Virus, H2N2 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Adolescent , Adult , Double-Blind Method , Female , Healthy Volunteers , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Male , Young Adult
14.
PLoS One ; 9(7): e102339, 2014.
Article in English | MEDLINE | ID: mdl-25058039

ABSTRACT

H2N2 Influenza A caused the Asian flu pandemic in 1957, circulated for more than 10 years and disappeared from the human population after 1968. Given that people born after 1968 are naïve to H2N2, that the virus still circulates in wild birds and that this influenza subtype has a proven pandemic track record, H2N2 is regarded as a potential pandemic threat. To prepare for an H2N2 pandemic, here we developed and tested in mice and ferrets two live attenuated influenza vaccines based on the haemagglutinins of the two different H2N2 lineages that circulated at the end of the cycle, using the well characterized A/Leningrad/134/17/57 (H2N2) master donor virus as the backbone. The vaccine strains containing the HA and NA of A/California/1/66 (clade 1) or A/Tokyo/3/67 (clade 2) showed a temperature sensitive and cold adapted phenotype and a reduced reproduction that was limited to the respiratory tract of mice, suggesting that the vaccines may be safe for use in humans. Both vaccine strains induced haemagglutination inhibition titers in mice. Vaccination abolished virus replication in the nose and lung and protected mice from weight loss after homologous and heterologous challenge with the respective donor wild type strains. In ferrets, the live attenuated vaccines induced high virus neutralizing, haemagglutination and neuraminidase inhibition titers, however; the vaccine based on the A/California/1/66 wt virus induced higher homologous and better cross-reactive antibody responses than the A/Tokyo/3/67 based vaccine. In line with this observation, was the higher virus reduction observed in the throat and nose of ferrets vaccinated with this vaccine after challenge with either of the wild type donor viruses. Moreover, both vaccines clearly reduced the infection-induced rhinitis observed in placebo-vaccinated ferrets. The results favor the vaccine based on the A/California/1/66 isolate, which will be evaluated in a clinical study.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Influenza A Virus, H2N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Pandemics/prevention & control , Reassortant Viruses/immunology , Animals , Drug Evaluation, Preclinical , Female , Ferrets , Gene Expression , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/immunology , Humans , Immunization , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Lung/drug effects , Lung/immunology , Lung/virology , Mice , Mice, Inbred CBA , Neuraminidase/genetics , Neuraminidase/immunology , Nose/drug effects , Nose/immunology , Nose/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Reassortant Viruses/genetics , Vaccines, Attenuated , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...