Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 223(1): 255-265, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28779306

ABSTRACT

Atomic force microscopy (AFM) is emerging as an innovative tool to phenotype the brain. This study demonstrates the utility of AFM to determine nanomechanical and nanostructural features of the murine dorsolateral frontal cortex from weaning to adulthood. We found an increase in tissue stiffness of the primary somatosensory cortex with age, along with an increased cortical mechanical heterogeneity. To characterize the features potentially responsible for this heterogeneity, we applied AFM scan mode to directly image the topography of thin sections of the primary somatosensory cortical layers II/III, IV and V/VI. Topographical mapping of the cortical layers at successive ages showed progressive smoothing of the surface. Topographical images were also compared with histochemically derived morphological information, which demonstrated the deposition of perineuronal nets, important extracellular components and markers of maturity. Our work demonstrates that high-resolution AFM images can be used to determine the nanostructural properties of cortical maturation, well beyond embryonic and postnatal development. Furthermore, it may offer a new method for brain phenotyping and screening to uncover topographical changes in early stages of neurodegenerative diseases.


Subject(s)
Brain Mapping , Frontal Lobe/growth & development , Frontal Lobe/ultrastructure , Microscopy, Atomic Force , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Biomechanical Phenomena , Biotin , Male , Mice , Mice, Inbred C57BL , Plant Lectins/metabolism , Receptors, N-Acetylglucosamine/metabolism
2.
Carbohydr Polym ; 151: 373-380, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27474579

ABSTRACT

PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions.


Subject(s)
Chitin , Elasticity , Nanocomposites/chemistry , Silicon Dioxide , Mechanical Phenomena
3.
Micron ; 85: 8-14, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27023832

ABSTRACT

Structural and mechanical mapping at the nanoscale by novel high-speed multiparametric Quantitative Imaging (QI) and PeakForce Quantitative Nanomechanical Mapping (PF-QNM) AFM modes was compared to the classical Force Volume (FV) mapping for the case of living Pseudomonas aeruginosa bacterial cells. QI and PF-QNM modes give results consistent with FV for the whole cells in terms of morphology and elastic modulus, while providing higher resolution and shorter acquisition time. As an important complement, the influence of scanning parameters on elastic modulus values was explored for small 0.2(2)µm(2) central area on top of cells. The modulus decreases with the indentation depth due to the effect of the hard cell wall, while it increases vs. tip oscillation frequency, displaying viscoelastic behaviour of the living bacterial cells. The ability of different AFM modes to follow correctly the bacteria viscoelastic behaviour at high oscillation frequency was tested.

SELECTION OF CITATIONS
SEARCH DETAIL