Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607949

ABSTRACT

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.


Subject(s)
Aedes/microbiology , Arbovirus Infections/prevention & control , Infertility, Male , Mosquito Control/methods , Wolbachia/metabolism , Aedes/physiology , Animals , Arbovirus Infections/transmission , Arboviruses , Australia , Biological Control Agents , Female , Humans , Male , Mosquito Vectors/microbiology , Queensland
3.
PLoS One ; 16(8): e0254798, 2021.
Article in English | MEDLINE | ID: mdl-34383766

ABSTRACT

As society has moved past the initial phase of the COVID-19 crisis that relied on broad-spectrum shutdowns as a stopgap method, industries and institutions have faced the daunting question of how to return to a stabilized state of activities and more fully reopen the economy. A core problem is how to return people to their workplaces and educational institutions in a manner that is safe, ethical, grounded in science, and takes into account the unique factors and needs of each organization and community. In this paper, we introduce an epidemiological model (the "Community-Workplace" model) that accounts for SARS-CoV-2 transmission within the workplace, within the surrounding community, and between them. We use this multi-group deterministic compartmental model to consider various testing strategies that, together with symptom screening, exposure tracking, and nonpharmaceutical interventions (NPI) such as mask wearing and physical distancing, aim to reduce disease spread in the workplace. Our framework is designed to be adaptable to a variety of specific workplace environments to support planning efforts as reopenings continue. Using this model, we consider a number of case studies, including an office workplace, a factory floor, and a university campus. Analysis of these cases illustrates that continuous testing can help a workplace avoid an outbreak by reducing undetected infectiousness even in high-contact environments. We find that a university setting, where individuals spend more time on campus and have a higher contact load, requires more testing to remain safe, compared to a factory or office setting. Under the modeling assumptions, we find that maintaining a prevalence below 3% can be achieved in an office setting by testing its workforce every two weeks, whereas achieving this same goal for a university could require as much as fourfold more testing (i.e., testing the entire campus population twice a week). Our model also simulates the dynamics of reduced spread that result from the introduction of mitigation measures when test results reveal the early stages of a workplace outbreak. We use this to show that a vigilant university that has the ability to quickly react to outbreaks can be justified in implementing testing at the same rate as a lower-risk office workplace. Finally, we quantify the devastating impact that an outbreak in a small-town college could have on the surrounding community, which supports the notion that communities can be better protected by supporting their local places of business in preventing onsite spread of disease.


Subject(s)
COVID-19/prevention & control , Contact Tracing/methods , Disease Outbreaks/prevention & control , Physical Distancing , Universities , Workplace , Humans
4.
J Med Entomol ; 58(6): 2425-2431, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34240181

ABSTRACT

With global expansion of the two main vectors of dengue, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Aedes albopictus (Skuse, Diptera: Culicidae), there is a need to further develop cost-effective and user-friendly surveillance tools to monitor the population dynamics of these species. The abundance of Ae. aegypti and Ae. Albopictus, and associated bycatch captured by Male Aedes Sound Traps (MASTs) and BG-Sentinel (BGS) traps that were unbaited or baited with BG-Lures were compared in Cairns, Australia and Madang, Papua New Guinea. Mean male Ae. aegypti and Ae. albopictus catch rates in MASTs did not significantly differ when deployed with BG-Lures. Similarly, males of both these species were not sampled at statistically different rates in BGS traps with or without BG-Lures. However, MASTs with BG-Lures caught significantly less male Ae. aegypti than BGS traps baited with BG-Lures in Cairns, and MASTs without BG-Lures caught significantly more male Ae. albopictus than BGS traps without BG-Lures in Madang. Additionally, BG-Lures significantly increased female Ae. aegypti catch rates in BGS traps in Cairns. Lastly, bycatch capture rates in BGS traps were not significantly influenced by the addition of the BG-Lures. While this study provides useful information regarding the surveillance of Ae. aegypti and Ae. albopictus in these locations, further development and investigation is required to successfully integrate an olfactory lure into the MAST system.


Subject(s)
Aedes , Mosquito Control , Mosquito Vectors , Animals , Male , Papua New Guinea , Queensland , Sound
5.
PLoS Negl Trop Dis ; 15(6): e0009357, 2021 06.
Article in English | MEDLINE | ID: mdl-34097696

ABSTRACT

Rapid advances in biological and digital support systems are revolutionizing the population control of invasive disease vectors such as Aedes aegypti. Methods such as the sterile and incompatible insect techniques (SIT/IIT) rely on modified males to seek out and successfully mate with females, and in doing so outcompete the wild male population for mates. Currently, these interventions most frequently infer mating success through area-wide population surveillance and estimates of mating competitiveness are rare. Furthermore, little is known about male Ae. aegypti behaviour and biology in field settings. In preparation for a large, community scale IIT program, we undertook a series of mark- release-recapture experiments using rhodamine B to mark male Ae. aegypti sperm and measure mating interactions with females. We also developed a Spatial and Temporally Evolving Isotropic Kernel (STEIK) framework to assist researchers to estimate the movement of individuals through space and time. Results showed that ~40% of wild females captured daily were unmated, suggesting interventions will need to release males multiple times per week to be effective at suppressing Ae. aegypti populations. Males moved rapidly through the landscape, particularly when released during the night. Although males moved further than what is typically observed in females of the species, survival was considerably lower. These unique insights improve our understanding of mating interactions in wild Ae. aegypti populations and lay the foundation for robust suppression strategies in the future.


Subject(s)
Aedes/physiology , Animal Distribution , Animal Identification Systems/methods , Behavior, Animal , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Animals , Male , Mosquito Control/methods , Population Dynamics
6.
Insects ; 12(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925425

ABSTRACT

Effective surveillance of Aedes aegypti (Linnaeus, Diptera: Culicidae) is critical to monitoring the impact of vector control measures when mitigating disease transmission by this species. There are benefits to deploying male-specific traps, particularly when a high level of catch-specificity is desired. Here, the rationale behind the developmental process of an entirely new trap which uses a sound lure to capture male Ae. aegypti, the male Aedes sound trap (MAST), is presented as a target product profile with findings from developmental trials of key trap components and performance. Trial results suggest that the presence of a black base associated with the trap influenced male catches as did variations in size of this base, to a degree. Trap entrance shape didn't influence catch rates, but entrance size did. No significant differences in catch rates were found when sound lures were set to intermittent or continuous playbacks, at volumes between 63-74 dB or frequencies of 450 Hz compared to 500 Hz. Additionally, adult males aged 3 days post-eclosion, were less responsive to sound lures set to 500 Hz than those 4 or 6 days old. Lastly, almost no males were caught when the MAST directly faced continual winds of 1.5 ms-1, but males were captured at low rates during intermittent winds, or if the trap faced away from the wind. The developmental process to optimising this trap is applicable to the development of alternate mosquito traps beyond Aedes sound traps and provides useful information towards the improved surveillance of these disease vectors.

7.
PLoS Negl Trop Dis ; 15(2): e0009061, 2021 02.
Article in English | MEDLINE | ID: mdl-33630829

ABSTRACT

Aedes aegypti and Aedes albopictus vector dengue, chikungunya and Zika viruses. With both species expanding their global distributions at alarming rates, developing effective surveillance equipment is a continuing priority for public health researchers. Sound traps have been shown, in limited testing, to be highly species-specific when emitting a frequency corresponding to a female mosquito wingbeat. Determining male mosquito capture rates in sound traps based on lure frequencies in endemic settings is the next step for informed deployment of these surveillance tools. We field-evaluated Male Aedes Sound Traps (MASTs) set to either 450 Hz, 500 Hz, 550 Hz or 600 Hz for sampling Aedes aegypti and/or Aedes albopictus and compared catch rates to BG-Sentinel traps within Pacific (Madang, Papua New Guinea) and Latin American (Molas, Mexico and Orange Walk Town, Belize) locations. MASTs set to 450-550 Hz consistently caught male Ae. aegypti at rates comparable to BG-Sentinel traps in all locations. A peak in male Ae. albopictus captures in MASTs set at 550 Hz was observed, with the lowest mean abundance recorded in MASTs set to 450 Hz. While significantly higher abundances of male Culex were sampled in MASTs emitting lower relative frequencies in Molas, overall male Culex were captured in significantly lower abundances in the MASTs, relative to BG-Sentinel traps within all locations. Finally, significant differences in rates at which male Aedes and Culex were positively detected in trap-types per weekly collections were broadly consistent with trends in abundance data per trap-type. MASTs at 550 Hz effectively captured both male Ae. aegypti and Ae. albopictus while greatly reducing bycatch, especially male Culex, in locations where dengue transmission has occurred. This high species-specificity of the MAST not only reduces staff-time required to sort samples, but can also be exploited to develop an accurate smart-trap system-both outcomes potentially reducing public health program expenses.


Subject(s)
Aedes , Mosquito Control/instrumentation , Mosquito Control/methods , Mosquito Vectors , Sound , Aedes/virology , Animals , Female , Latin America , Male , Mosquito Vectors/virology , Pacific Islands , Species Specificity , Zika Virus , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
8.
J Med Entomol ; 58(1): 408-415, 2021 01 12.
Article in English | MEDLINE | ID: mdl-32740655

ABSTRACT

As Aedes aegypti (Linnaeus, Diptera: Culicidae) expands its global distribution and vectors a range of debilitating arboviruses there is an increased need for enhanced mosquito surveillance. Consequently, we developed a Male Aedes Sound Trap (MAST) that requires minimal power and is highly species-specific. Two different versions of the MAST were developed, one that uses synthetic pyrethroid to kill captured mosquitoes (MAST Spray) and another which has an internal divider to create a killing chamber in which a sticky panel can be placed to capture mosquitoes (MAST Sticky). We compared weekly capture rates of male Ae. aegypti and bycatch from the two MAST versions to those from BG-Sentinel (BGS) traps and Sound-producing BG-Gravid Aedes Traps (SGATs) throughout Cairns, northern Australia. Weekly mean male Ae. aegypti catches did not significantly differ between trap types. However, the rate of positive weekly detections of male Ae. aegypti was lower for the MAST Sticky than the other three trap types. The MASTs sampled significantly fewer mosquitoes other than male Ae. aegypti, than either the BGS trap or the SGAT. Also, the MASTs and SGATs all caught significantly less non-Culicidae bycatch than the BGS traps. Consequently, we have developed a versatile male Ae. aegypti trap which is potentially of great benefit to Ae. aegypti surveillance programs.


Subject(s)
Aedes , Mosquito Control/methods , Mosquito Vectors , Sound , Animals , Male , Mosquito Control/instrumentation , Queensland
10.
PLoS Negl Trop Dis ; 14(6): e0008367, 2020 06.
Article in English | MEDLINE | ID: mdl-32530921

ABSTRACT

As Aedes aegypti continues to expand its global distribution, the diseases it vectors (dengue, Zika, chikungunya and yellow fever) are of increasing concern. Modern efforts to control this species include "rear and release" strategies where lab-reared mosquitoes are distributed throughout the landscape to replace or suppress invasive populations. These programs require intensive surveillance efforts to monitor their success, and the Biogents Sentinel (BGS) trap is one of the most effective tools for sampling adult Ae. aegypti. BGS trap catches can be highly variable throughout landscapes, so we investigated the potential impacts of environmental factors on adult Ae. aegypti capture rates during a "rear and release" program in California to better understand the relative contributions of true variability in population density across a landscape and trap context. We recorded male and female Ae. aegypti catches from BGS traps, with and without CO2, throughout control sites where no mosquitoes were released and in treatment sites where males infected with Wolbachia were released. BGS trap catches were positively influenced by higher proportions of shade or bushes in the front yard of the premises as well as the presence of potential larval habitats such as subterranean vaults. In contrast, an increase in residential habitat within a 100 m radius of trap locations negatively influenced BGS trap catches. For male Ae. aegypti, increased visual complexity of the trap location positively influenced capture rates, and the presence of yard drains negatively affected catch rates in control sites. Lastly, for BGS traps using CO2, higher catch rates were noted from traps placed greater than one meter from walls or fences for both male and female mosquitoes. These results have important implications for surveillance programs of Ae. aegypti throughout the Californian urban environment including adult monitoring during "rear and release" programs.


Subject(s)
Aedes/physiology , Environmental Monitoring , Mosquito Vectors/physiology , Animals , California , Ecosystem , Female , Housing , Male , Mosquito Control , Wolbachia
11.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Article in English | MEDLINE | ID: mdl-32265562

ABSTRACT

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Subject(s)
Aedes/microbiology , Aedes/physiology , Mosquito Control/methods , Mosquito Vectors/microbiology , Mosquito Vectors/physiology , Wolbachia/physiology , Aedes/growth & development , Animal Migration , Animals , California , Female , Larva/growth & development , Larva/microbiology , Larva/physiology , Male , Mosquito Control/statistics & numerical data , Mosquito Vectors/growth & development , Population Dynamics , Sex Characteristics
12.
J Med Entomol ; 57(3): 957-961, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31799614

ABSTRACT

Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


Subject(s)
Aedes/physiology , Chemotaxis , Mosquito Control , Odorants , Animals , Male , Queensland
13.
J Am Mosq Control Assoc ; 35(3): 169-177, 2019 09.
Article in English | MEDLINE | ID: mdl-31647706

ABSTRACT

Aedes aegypti is a vector of many significant arboviruses worldwide, including dengue, Zika, chikungunya, and yellow fever viruses. With vector control methodology pivoting toward rearing and releasing large numbers of insects for either population suppression or virus-blocking, economical remote (sentinel) surveillance methods for release tracking become increasingly necessary. Recent steps in this direction include advances in optical sensors that identify and classify insects based on their wing beat frequency (WBF). As these traps are being developed, there is a strong need to better understand the environmental and biological factors influencing mosquito WBFs. Here, we developed new untethered-subject methodology to detect changes in WBFs of male and female Ae. aegypti. This new methodology involves directing an ultrasonic transducer at a free-flying subject and measuring the Doppler shift of the reflected ultrasonic continuous wave signal. This system's utility was assessed by determining its ability to confirm previous reports on the effect of temperature, body size, and age on the WBFs generated from acoustic or optical-based experiments. The presented ultrasonic method successfully detected expected trends for each factor for both male and female Ae. aegypti without the need for subject manipulation and potential impediment of natural flight dynamics due to tethering. As a result, this ultrasonic methodology provides a new method for understanding the environmental and physiological determinants of male and female WBFs that can inform the design of remote mosquito surveillance systems.


Subject(s)
Aedes/physiology , Mosquito Control/methods , Mosquito Vectors/physiology , Wings, Animal/physiology , Animals , Entomology/methods , Female , Male
14.
Parasit Vectors ; 12(1): 417, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31488182

ABSTRACT

BACKGROUND: Sterile male rear-and-release programmes are of growing interest for controlling Aedes aegypti, including use an "incompatible insect technique" (IIT) to suppress transmission of dengue, Zika, and other viruses. Under IIT, males infected with Wolbachia are released into the suppression area to induce cytoplasmic incompatibility in uninfected populations. These and similar mosquito-release programmes require cost-effective field surveys of both sexes to optimize the locations, timing, and quantity of releases. Unfortunately, traps that sample male Ae. aegypti effectively are expensive and usually require mains power. Recently, an electronic lure was developed that attracts males using a 484 Hz sinusoidal tone mimicking the female wingbeat frequencies, broadcast in a 120 s on/off cycle. When deployed in commercially available gravid Aedes traps (GATs), the new combination, sound-GAT (SGAT), captures both males and females effectively. Given its success, there is interest in optimizing SGAT to reduce cost and power usage while maximizing catch rates. METHODS: Options considered in this study included use of a smaller, lower-power microcontroller (Tiny) with either the original or a lower-cost speaker (lcS). A 30 s on/off cycle was tested in addition to the original 120 s cycle to minimize the potential that the longer cycle induced habituation. The original SGAT was compared against other traps incorporating the Tiny-based lures for mosquito capture in a large semi-field cage. The catch rates in waterproofed versions of this trap were then compared with catch rates in standard [BG-Sentinel 2 (BGS 2); Biogents AG, Regensburg, Germany] traps during an IIT field study in the Innisfail region of Queensland, Australia in 2017. RESULTS: The system with a low-power microcontroller and low-cost speaker playing a 30 s tone (Tiny-lcS-30s) caught the highest proportion of males. The mean proportions of males caught in a semi-field cage were not significantly different among the original design and the four low-power, low-cost versions of the SGAT. During the IIT field study, the waterproofed version of the highest-rated, Tiny-lcS-30s SGAT captured male Ae. aegypti at similar rates as co-located BGS-2 traps. CONCLUSIONS: Power- and cost-optimized, waterproofed versions of male Ae. aegypti acoustic lures in GATs are now available for field use in areas with sterile male mosquito rear-and-release programmes.


Subject(s)
Aedes/physiology , Mosquito Control/instrumentation , Mosquito Control/methods , Sound , Virus Diseases/prevention & control , Aedes/virology , Animals , Costs and Cost Analysis , Dengue/prevention & control , Female , Male , Mosquito Control/economics , Mosquito Vectors/physiology , Mosquito Vectors/virology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
15.
J Med Entomol ; 56(4): 1102-1111, 2019 06 27.
Article in English | MEDLINE | ID: mdl-30817823

ABSTRACT

As the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy. The Biogents Sentinel (BGS) trap is the gold standard for surveilling adult Aedes mosquitoes and is commonly deployed worldwide, including during modern 'rear and release' programs. Despite its extensive use, few studies have directly assessed environmental characteristics that affect BGS trap catches, let alone how these influences change during 'rear and release' programs. We assessed male and female Ae. aegypti spatial stability, as well as premises condition and trap location influences on BGS trap catches, as part of Debug Innisfail 'rear and release' program in northern Australia. We found similar trends in spatial stability of male and female mosquitoes at both weekly and monthly resolutions. From surveillance in locations where no males were released, reduced catches were found at premises that contained somewhat damaged houses and unscreened properties. In addition, when traps were located in areas that were unsheltered, more than 10 m from commonly used sitting areas or more visually complex catches were also negatively affected. In locations where males were released, we found that traps in treatment sites, relative to control sites, displayed increased catches in heavily shaded premises and were inconsistently influenced by differences in house sets and building materials. Such findings have valuable implications for a range of Ae. aegypti surveillance programs.


Subject(s)
Aedes , Environment , Mosquito Control , Animals , Female , Male
16.
PLoS Negl Trop Dis ; 11(9): e0005902, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28957318

ABSTRACT

BACKGROUND: Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. METHODOLOGY/PRINCIPLE FINDINGS: Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. CONCLUSIONS/SIGNIFICANCE: These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.


Subject(s)
Aedes/physiology , Entomology/methods , Fluorescent Dyes/administration & dosage , Rhodamines/administration & dosage , Sexual Behavior, Animal , Staining and Labeling/methods , Animals , Female , Fluorescent Dyes/analysis , Male , Rhodamines/analysis , Semen/chemistry
17.
In. Stauffacher, Daniel; Weekes, Barbara; Gasser, Urs; Maclay, Colin; Best, Michael. Peacebuilding in the Information Age: Sifting hype from reality. s.l, ICT4Peace Foundation;United States. Harvard University. Berkman Centre for Internet and Society;Georgia Institute of Technology (GeorgiaTech), Jan. 2011. p.34-38.
Monography in English | Desastres -Disasters- | ID: des-18617

ABSTRACT

Cet article s'intéresse aux difficultés de la gestion de l'information sur le terrain durant une réponse humanitaire. 20 bribes de situations réelles délicates sont présentées.


Subject(s)
Information Management , Information Technology
18.
Prehosp Disaster Med ; 20(6): 464-7, 2005.
Article in English | MEDLINE | ID: mdl-16496638

ABSTRACT

This is a summary of the presentations and discussion of Panel 2.18, Logistics, Information Technology, and Telecommunications in Crisis Management of the Conference, Health Aspects of the Tsunami Disaster in Asia, convened by the World Health Organization (WHO) in Phuket, Thailand, 04-06 May 2005. The topics discussed included issues related to logistics, information technology (IT), and crisis communication pertaining to the responses to the damage created by the Tsunami. It is presented in the following major sections: (1) issues; (2) lessons learned; (3) what was done well; (4) what could have been done better; and (5) conclusions and recommendations. Each major section is presented in four sub-sections: (1) needs assessments; (2) coordination; (3) filling the gaps; and (4) capacity building.


Subject(s)
Disasters , Information Dissemination , Organization and Administration , Telecommunications/organization & administration , Indonesia , World Health Organization
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 1): 031901, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11909103

ABSTRACT

A quasispecies evolving on a fitness landscape with a single peak of fluctuating height is studied. In the approximation that back mutations can be ignored, the rate equations can be solved analytically. It is shown that the error threshold on this class of dynamic landscapes is defined by the time average of the selection pressure. In the case of a periodically fluctuating fitness peak, we also study the phase shift and response amplitude of the previously documented low-pass filter effect. The special case of a small harmonic fluctuation is treated analytically.


Subject(s)
Genetics, Population , Models, Genetic , Biological Evolution , Models, Statistical , Mutation , Time Factors
20.
Bull Math Biol ; 64(6): 1033-43, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12508529

ABSTRACT

In this paper, we study the evolution of the mutation rate for simple organisms in dynamic environments. A model based on explicit population dynamics at the gene sequence level, with multiple fitness coding loci tracking a moving fitness peak in a random fitness background, is developed and an analytical expression for the optimal mutation rate is derived. The optimal mutation rate per genome is approximately independent of genome length, something that has been observed in nature. Furthermore, the optimal mutation rate is a function of the absolute, not relative, replication rate of the superior gene sequences. Simulations confirm the theoretical predictions.


Subject(s)
Evolution, Molecular , Models, Genetic , Point Mutation/genetics , Computer Simulation , Environment , Genome , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...