Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 21163, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256511

ABSTRACT

The generation of new neurons at the hippocampal neurogenic niche, known as adult hippocampal neurogenesis (AHN), and its impairment, have been implicated in Alzheimer's disease (AD). MicroRNA-132 (miR-132), the most consistently downregulated microRNA (miRNA) in AD, was recently identified as a potent regulator of AHN, exerting multilayered proneurogenic effects in adult neural stem cells (NSCs) and their progeny. Supplementing miR-132 in AD mouse brain restores AHN and relevant memory deficits, yet the exact mechanisms involved are still unknown. Here, we identify NACC2 as a novel miR-132 target implicated in both AHN and AD. miR-132 deficiency in mouse hippocampus induces Nacc2 expression and inflammatory signaling in adult NSCs. We show that miR-132-dependent regulation of NACC2 is involved in the initial stages of human NSC differentiation towards astrocytes and neurons. Later, NACC2 function in astrocytic maturation becomes uncoupled from miR-132. We demonstrate that NACC2 is present in reactive astrocytes surrounding amyloid plaques in mouse and human AD hippocampus, and that there is an anticorrelation between miR-132 and NACC2 levels in AD and upon induction of inflammation. Unraveling the molecular mechanisms by which miR-132 regulates neurogenesis and cellular reactivity in AD, will provide valuable insights towards its possible application as a therapeutic target.


Subject(s)
Alzheimer Disease , Astrocytes , Hippocampus , MicroRNAs , Neural Stem Cells , Neurogenesis , MicroRNAs/genetics , MicroRNAs/metabolism , Neurogenesis/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Humans , Neural Stem Cells/metabolism , Mice , Hippocampus/metabolism , Hippocampus/pathology , Astrocytes/metabolism , Neurons/metabolism , Cell Differentiation , Gene Expression Regulation
2.
iScience ; 26(6): 106829, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37250784

ABSTRACT

microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.

3.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34033742

ABSTRACT

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Hippocampus , Humans , Memory Disorders/genetics , Memory Disorders/therapy , Mice , MicroRNAs/genetics , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL