Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38132790

ABSTRACT

The international plant trade results in the accidental movement of invasive pests and pathogens, and has contributed significantly to recent range expansion of pathogens including Dothistroma septosporum. Seeds are usually thought to present a lower biosecurity risk than plants, but the importation of Pinus contorta seeds from North America to Britain in the mid-1900s, and similarities between British and Canadian D. septosporum populations suggests seeds could be a pathway. Dothistroma septosporum has not been isolated from seeds, but inadequately cleaned seed material could contain infected needle fragments. This case study investigated whether cone kilning, and wet and dry heat treatments could reduce D. septosporum transmission without damaging seed viability. Pinus needles infected with D. septosporum were incubated alongside cones undergoing three commercial seed extraction processes. Additional needles were exposed to temperatures ranging from 10 to 67 °C dry heat for up to 48 h, or incubated in water heated to between 20 and 60 °C for up to one hour. Pinus sylvestris seeds were exposed to 60 and 65 dry heat °C for 48 h, and further seed samples incubated in water heated to between 20 and 60 °C for up to one hour. Dothistroma septosporum survived the three kilning processes and while seeds were not damaged by dry heat exceeding 63.5 °C, at this temperature no D. septosporum survived. Wet heat treatments resulted in less than 10% pathogen survival following incubation at 40 °C, while at this temperature the seeds suffered no significant impacts, even when submerged for one hour. Thus, commercial seed kilning could allow D. septosporum transmission, but elevated wet and dry heat treatments could be applied to seed stock to minimise pathogen risk without significantly damaging seed viability.

2.
Front Immunol ; 14: 1170357, 2023.
Article in English | MEDLINE | ID: mdl-37251411

ABSTRACT

Background: Serum albumin binding is an established mechanism to extend the serum half-life of antibody fragments and peptides. The cysteine rich knob domains, isolated from bovine antibody ultralong CDRH3, are the smallest single chain antibody fragments described to date and versatile tools for protein engineering. Methods: Here, we used phage display of bovine immune material to derive knob domains against human and rodent serum albumins. These were used to engineer bispecific Fab fragments, by using the framework III loop as a site for knob domain insertion. Results: By this route, neutralisation of the canonical antigen (TNFα) was retained but extended pharmacokinetics in-vivo were achieved through albumin binding. Structural characterisation revealed correct folding of the knob domain and identified broadly common but non-cross-reactive epitopes. Additionally, we show that these albumin binding knob domains can be chemically synthesised to achieve dual IL-17A neutralisation and albumin binding in a single chemical entity. Conclusions: This study enables antibody and chemical engineering from bovine immune material, via an accessible discovery platform.


Subject(s)
Antibodies, Bispecific , Serum Albumin , Animals , Cattle , Humans , Serum Albumin/metabolism , Immunoglobulin Fab Fragments , Epitopes , Cell Surface Display Techniques
3.
PeerJ ; 10: e14516, 2022.
Article in English | MEDLINE | ID: mdl-36540795

ABSTRACT

Dynamic modelling has considerably improved our understanding of complex molecular mechanisms. Ordinary differential equations (ODEs) are the most detailed and popular approach to modelling the dynamics of molecular systems. However, their application in signalling networks, characterised by multi-state molecular complexes, can be prohibitive. Contemporary modelling methods, such as rule- based (RB) modelling, have addressed these issues. The advantages of RB modelling over ODEs have been presented and discussed in numerous reviews. In this study, we conduct a direct comparison of the time courses of a molecular system founded on the same reaction network but encoded in the two frameworks. To make such a comparison, a set of reactions that underlie an ODE model was manually encoded in the Kappa language, one of the RB implementations. A comparison of the models was performed at the level of model specification and dynamics, acquired through model simulations. In line with previous reports, we confirm that the Kappa model recapitulates the general dynamics of its ODE counterpart with minor differences. These occur when molecules have multiple sites binding the same interactor. Furthermore, activation of these molecules in the RB model is slower than in the ODE one. As reported for other molecular systems, we find that, also for the DARPP-32 reaction network, the RB representation offers a more expressive and flexible syntax that facilitates access to fine details of the model, easing model reuse. In parallel with these analyses, we report a refactored model of the DARPP-32 interaction network that can serve as a canvas for the development of more complex dynamic models to study this important molecular system.


Subject(s)
Signal Transduction , Dopamine and cAMP-Regulated Phosphoprotein 32
4.
Elife ; 102021 02 11.
Article in English | MEDLINE | ID: mdl-33570492

ABSTRACT

Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.


Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows' antibodies contain an ultra-long loop region that contains a 'knob domain' which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows' antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.


Subject(s)
Allosteric Regulation/drug effects , Complement C5/antagonists & inhibitors , Drug Discovery , Peptides/chemistry , Peptides/pharmacology , Animals , Cattle , Complement C5/chemistry , Complement C5/metabolism , Molecular Docking Simulation , Protein Conformation/drug effects
5.
MAbs ; 13(1): 1873478, 2021.
Article in English | MEDLINE | ID: mdl-33448242

ABSTRACT

Solving the structure of an antibody-antigen complex gives atomic level information of the interactions between an antibody and its antigen, but such structures are expensive and hard to obtain. Alternative experimental sources include epitope mapping and binning experiments, which can be used as a surrogate to identify key interacting residues. However, their resolution is usually not sufficient to identify if two antibodies have identical interactions. Computational approaches to this problem have so far been based on the premise that antibodies with similar sequences behave similarly. Such approaches will fail to identify sequence-distant antibodies that target the same epitope. Here, we present Ab-Ligity, a structure-based similarity measure tailored to antibody-antigen interfaces. Using predicted paratopes on model antibody structures, we assessed its ability to identify those antibodies that target highly similar epitopes. Most antibodies adopting similar binding modes can be identified from sequence similarity alone, using methods such as clonotyping. In the challenging subset of antibodies whose sequences differ significantly, Ab-Ligity is still able to predict antibodies that would bind to highly similar epitopes (precision of 0.95 and recall of 0.69). We compared Ab-Ligity's performance to an existing tool for comparing general protein interfaces, InterComp, and showed improved performance on antibody cases achieved in a substantially reduced time. These results suggest that Ab-Ligity will allow the identification of diverse (sequence-dissimilar) antibodies that bind to the same epitopes from large datasets such as immune repertoires. The tool is available at http://opig.stats.ox.ac.uk/resources.


Subject(s)
Antibodies/immunology , Antigen-Antibody Complex/immunology , Antigens/immunology , Computational Biology/methods , Epitope Mapping/methods , Epitopes/immunology , Algorithms , Antibodies/chemistry , Antigen-Antibody Complex/chemistry , Antigens/chemistry , Binding Sites, Antibody/immunology , Crystallography, X-Ray , Epitopes/chemistry , Humans , Protein Binding/immunology
6.
PLoS Biol ; 18(9): e3000821, 2020 09.
Article in English | MEDLINE | ID: mdl-32886672

ABSTRACT

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Subject(s)
Antibodies/chemistry , Disulfides/isolation & purification , Immunoglobulin Domains , Peptide Fragments/isolation & purification , Protein Interaction Domains and Motifs , Animals , Antibodies/immunology , Antibodies/metabolism , Antibody Affinity , Antibody Formation , Antibody Specificity , Antigens/genetics , Antigens/immunology , B-Lymphocytes/physiology , Cattle , Complement C5/chemistry , Complement C5/genetics , Complement C5/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Disulfides/chemistry , Disulfides/immunology , Epitope Mapping/methods , Humans , Immunization , Immunoglobulin Domains/genetics , Models, Molecular , Peptide Fragments/genetics , Peptide Fragments/immunology , Protein Interaction Domains and Motifs/genetics
7.
PLoS Comput Biol ; 16(2): e1007636, 2020 02.
Article in English | MEDLINE | ID: mdl-32069281

ABSTRACT

Most current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the complementary-determining regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated CDRs provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of CDR structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of CDR structure usage. Our results establish the CDR structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and "humanness" assessment of BCR repertoires from transgenic animals. The software tool for structural annotation of BCR repertoires, SAAB+, is available at https://github.com/oxpig/saab_plus.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation , Receptors, Antigen, B-Cell/metabolism , Adaptive Immunity , Animals , Animals, Genetically Modified , Antibodies , B-Lymphocytes/cytology , Cluster Analysis , High-Throughput Nucleotide Sequencing , Humans , Immunoglobulin G/chemistry , Mice , Mice, Inbred C57BL , Principal Component Analysis , Receptors, Antigen, B-Cell/genetics , Software
8.
J Immunol ; 201(12): 3694-3704, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30397033

ABSTRACT

Next-generation sequencing of the Ig gene repertoire (Ig-seq) produces large volumes of information at the nucleotide sequence level. Such data have improved our understanding of immune systems across numerous species and have already been successfully applied in vaccine development and drug discovery. However, the high-throughput nature of Ig-seq means that it is afflicted by high error rates. This has led to the development of error-correction approaches. Computational error-correction methods use sequence information alone, primarily designating sequences as likely to be correct if they are observed frequently. In this work, we describe an orthogonal method for filtering Ig-seq data, which considers the structural viability of each sequence. A typical natural Ab structure requires the presence of a disulfide bridge within each of its variable chains to maintain the fold. Our Ab Sequence Selector (ABOSS) uses the presence/absence of this bridge as a way of both identifying structurally viable sequences and estimating the sequencing error rate. On simulated Ig-seq datasets, ABOSS is able to identify more than 99% of structurally viable sequences. Applying our method to six independent Ig-seq datasets (one mouse and five human), we show that our error calculations are in line with previous experimental and computational error estimates. We also show how ABOSS is able to identify structurally impossible sequences missed by other error-correction methods.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Immunoglobulins/genetics , Software , Vaccines/immunology , Algorithms , Animals , Computational Biology , Databases as Topic , Drug Development , Humans , Mice , Protein Conformation , Quality Control , Scientific Experimental Error , Structure-Activity Relationship
9.
J Immunol ; 201(8): 2502-2509, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30217829

ABSTRACT

Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.


Subject(s)
Antibodies/genetics , Data Mining/methods , Immunoglobulins/genetics , Immunotherapy/methods , Animals , Antibody Diversity , Databases, Genetic , High-Throughput Nucleotide Sequencing , Humans , Immunity, Humoral/genetics , Mice , Molecular Sequence Annotation
10.
Front Immunol ; 9: 1698, 2018.
Article in English | MEDLINE | ID: mdl-30083160

ABSTRACT

Every human possesses millions of distinct antibodies. It is now possible to analyze this diversity via next-generation sequencing of immunoglobulin genes (Ig-seq). This technique produces large volume sequence snapshots of B-cell receptors that are indicative of the antibody repertoire. In this paper, we enrich these large-scale sequence datasets with structural information. Enriching a sequence with its structural data allows better approximation of many vital features, such as its binding site and specificity. Here, we describe the structural annotation of antibodies pipeline that maps the outputs of large Ig-seq experiments to known antibody structures. We demonstrate the viability of our protocol on five separate Ig-seq datasets covering ca. 35 m unique amino acid sequences from ca. 600 individuals. Despite the great theoretical diversity of antibodies, we find that the majority of sequences coming from such studies can be reliably mapped to an existing structure.

11.
Health Syst Reform ; 3(4): 301-312, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-30359178

ABSTRACT

Abstract-Progress toward universal health coverage (UHC) requires making difficult trade-offs. In this journal, Dr. Margaret Chan, the World Health Organization (WHO) Director-General, has endorsed the principles for making such decisions put forward by the WHO Consultative Group on Equity and UHC. These principles include maximizing population health, priority for the worse off, and shielding people from health-related financial risks. But how should one apply these principles in particular cases, and how should one adjudicate between them when their demands conflict? This article by some members of the Consultative Group and a diverse group of health policy professionals addresses these questions. It considers three stylized versions of actual policy dilemmas. Each of these cases pertains to one of the three key dimensions of progress toward UHC: which services to cover first, which populations to prioritize for coverage, and how to move from out-of-pocket expenditures to prepayment with pooling of funds. Our cases are simplified to highlight common trade-offs. Though we make specific recommendations, our primary aim is to demonstrate both the form and substance of the reasoning involved in striking a fair balance between competing interests on the road to UHC.

12.
Health Hum Rights ; 18(2): 11-22, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28559673

ABSTRACT

The goal of achieving Universal Health Coverage (UHC) can generally be realized only in stages. Moreover, resource, capacity, and political constraints mean governments often face difficult trade-offs on the path to UHC. In a 2014 report, Making fair choices on the path to UHC, the WHO Consultative Group on Equity and Universal Health Coverage articulated principles for making such trade-offs in an equitable manner. We present three case studies which illustrate how these principles can guide practical decision-making. These case studies show how progressive realization of the right to health can be effectively guided by priority-setting principles, including generating the greatest total health gain, priority for those who are worse off in a number of dimensions (including health, access to health services, and social and economic status), and financial risk protection. They also demonstrate the value of a fair and accountable process of priority setting.


Subject(s)
Decision Making , Human Rights , Universal Health Insurance , Health Services , Humans , Socioeconomic Factors
13.
MAbs ; 6(1): 143-59, 2014.
Article in English | MEDLINE | ID: mdl-24423622

ABSTRACT

Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.


Subject(s)
Antibodies, Monoclonal , Bone Marrow Cells/immunology , Immunoglobulin G , Plasma Cells/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Single-Chain Antibodies , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Fluorescence , HEK293 Cells , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Plasma Cells/cytology , Rabbits , Rats , Reverse Transcriptase Polymerase Chain Reaction , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Time Factors
14.
J Immunol Methods ; 405: 35-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24444705

ABSTRACT

Camel antibodies have been widely investigated, but work has focused upon the unique heavy chain antibodies found across camelid species. These are homodimers, devoid of light chains and the first constant heavy chain domain. Camelid species also display conventional hetero-tetrameric antibodies with identical pairs of heavy and light chains; in Camelus dromedarius these constitute 25% of circulating antibodies. Few investigations have been made on this subset of antibodies and complete conventional camel IgG sequences have not been reported. Here we study the sequence diversity of functional variable and constant regions observed in 57 conventional heavy, 18 kappa and 35 lambda light chains of C. dromedarius and Camelus bactrianus. We detail sequences of the full kappa and lambda light chain, variable and CH1 region for IgG1a and IgG1b and the CH2 and CH3 region for IgG1a. The majority (60%) of IgG1 variable region sequences aligned with the human IgHV3 family (clan III) and had leader sequences beginning with MELG whereas the remaining sequences aligned with the IgHV4 (clan II) and had leader sequences beginning with MRLL. Distinct differences in CDR length were observed between the two; where CDR1 was typically 5 and 7 residues and CDR2 at 17 and 16 residues, respectively. CDR3 length of IgHV4 (range 11 to 20) was closer to that typical of VHH antibodies than that of IgHV3 (range 3 to 18 residues). Designed oligonucleotide primers have enabled identification of paired heavy and light chains of conventional camel antibodies from individual B cell clones.


Subject(s)
Antibodies/immunology , Camelus/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Camelus/classification , Camelus/genetics , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , DNA Primers/genetics , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/immunology , Immunoglobulin lambda-Chains/genetics , Immunoglobulin lambda-Chains/immunology , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...