Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancer Cell ; 42(1): 119-134.e12, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38194912

ABSTRACT

The period between "successful" treatment of localized breast cancer and the onset of distant metastasis can last many years, representing an unexploited window to eradicate disseminated disease and prevent metastases. We find that the source of recurrence-disseminated tumor cells (DTCs) -evade endogenous immunity directed against tumor neoantigens. Although DTCs downregulate major histocompatibility complex I, this does not preclude recognition by conventional T cells. Instead, the scarcity of interactions between two relatively rare populations-DTCs and endogenous antigen-specific T cells-underlies DTC persistence. This scarcity is overcome by any one of three immunotherapies that increase the number of tumor-specific T cells: T cell-based vaccination, or adoptive transfer of T cell receptor or chimeric antigen receptor T cells. Each approach achieves robust DTC elimination, motivating discovery of MHC-restricted and -unrestricted DTC antigens that can be targeted with T cell-based immunotherapies to eliminate the reservoir of metastasis-initiating cells in patients.


Subject(s)
Breast Neoplasms , T-Lymphocytes , Humans , Female , Immune Evasion , Adoptive Transfer , Breast Neoplasms/therapy , Immunotherapy
2.
Annu Rev Immunol ; 39: 77-101, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33441019

ABSTRACT

Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.


Subject(s)
Necroptosis , Pyroptosis , Animals , Apoptosis , Humans , Inflammation , Signal Transduction
3.
Cell Rep ; 28(9): 2275-2287.e5, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31461645

ABSTRACT

Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells.


Subject(s)
Cell Membrane/metabolism , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , 3T3 Cells , Animals , Endoplasmic Reticulum/metabolism , Female , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
4.
PLoS Pathog ; 15(8): e1007899, 2019 08.
Article in English | MEDLINE | ID: mdl-31415679

ABSTRACT

West Nile Virus (WNV), an emerging and re-emerging RNA virus, is the leading source of arboviral encephalitic morbidity and mortality in the United States. WNV infections are acutely controlled by innate immunity in peripheral tissues outside of the central nervous system (CNS) but WNV can evade the actions of interferon (IFN) to facilitate CNS invasion, causing encephalitis, encephalomyelitis, and death. Recent studies indicate that STimulator of INterferon Gene (STING), canonically known for initiating a type I IFN production and innate immune response to cytosolic DNA, is required for host defense against neurotropic RNA viruses. We evaluated the role of STING in host defense to control WNV infection and pathology in a murine model of infection. When challenged with WNV, STING knock out (-/-) mice displayed increased morbidity and mortality compared to wild type (WT) mice. Virologic analysis and assessment of STING activation revealed that STING signaling was not required for control of WNV in the spleen nor was WNV sufficient to mediate canonical STING activation in vitro. However, STING-/- mice exhibited a clear trend of increased viral load and virus dissemination in the CNS. We found that STING-/- mice exhibited increased and prolonged neurological signs compared to WT mice. Pathological examination revealed increased lesions, mononuclear cellular infiltration and neuronal death in the CNS of STING-/- mice, with sustained pathology after viral clearance. We found that STING was required in bone marrow derived macrophages for early control of WNV replication and innate immune activation. In vivo, STING-/- mice developed an aberrant T cell response in both the spleen and brain during WNV infection that linked with increased and sustained CNS pathology compared to WT mice. Our findings demonstrate that STING plays a critical role in immune programming for the control of neurotropic WNV infection and CNS disease.


Subject(s)
Central Nervous System/immunology , Central Nervous System/pathology , Immunity, Innate/immunology , Membrane Proteins/physiology , Virus Replication , West Nile Fever/immunology , West Nile virus/immunology , Animals , Central Nervous System/metabolism , Central Nervous System/virology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Viral Load , West Nile Fever/metabolism , West Nile Fever/virology
5.
Sci Immunol ; 4(36)2019 06 21.
Article in English | MEDLINE | ID: mdl-31227597

ABSTRACT

Although the signaling events that induce different forms of programmed cell death are well defined, the subsequent immune responses to dying cells in the context of cancer remain relatively unexplored. Necroptosis occurs downstream of the receptor-interacting protein kinases RIPK1 and RIPK3, whose activation leads to lytic cell death accompanied by de novo production of proinflammatory mediators. Here, we show that ectopic introduction of necroptotic cells to the tumor microenvironment promotes BATF3+ cDC1- and CD8+ leukocyte-dependent antitumor immunity accompanied by increased tumor antigen loading by tumor-associated antigen-presenting cells. Furthermore, we report the development of constitutively active forms of the necroptosis-inducing enzyme RIPK3 and show that delivery of a gene encoding this enzyme to tumor cells using adeno-associated viruses induces tumor cell necroptosis, which synergizes with immune checkpoint blockade to promote durable tumor clearance. These findings support a role for RIPK1/RIPK3 activation as a beneficial proximal target in the initiation of tumor immunity. Considering that successful tumor immunotherapy regimens will require the rational application of multiple treatment modalities, we propose that maximizing the immunogenicity of dying cells within the tumor microenvironment through specific activation of the necroptotic pathway represents a beneficial treatment approach that may warrant further clinical development.


Subject(s)
Necroptosis/immunology , Neoplasms/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dependovirus/genetics , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NIH 3T3 Cells , Programmed Cell Death 1 Receptor/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction , Tumor Microenvironment/immunology
6.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635240

ABSTRACT

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Subject(s)
Glycoproteins/metabolism , Hydro-Lyases/metabolism , Neurons/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Pattern Recognition/metabolism , Zika Virus Infection/immunology , Zika Virus/physiology , Animals , Cell Death , Cells, Cultured , Disease Models, Animal , Glycoproteins/genetics , Humans , Hydro-Lyases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotection , RNA, Viral/immunology , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Succinate Dehydrogenase/metabolism , Succinates/metabolism , Virus Replication
7.
Cell Death Differ ; 26(1): 115-129, 2019 01.
Article in English | MEDLINE | ID: mdl-30341424

ABSTRACT

Our conception of programmed cell death has expanded beyond apoptosis to encompass additional forms of cell suicide, including necroptosis and pyroptosis; these cell death modalities are notable for their diverse and emerging roles in engaging the immune system. Concurrently, treatments that activate the immune system to combat cancer have achieved remarkable success in the clinic. These two scientific narratives converge to provide new perspectives on the role of programmed cell death in cancer therapy. This review focuses on our current understanding of the relationship between apoptosis and antitumor immune responses and the emerging evidence that induction of alternate death pathways such as necroptosis could improve therapeutic outcomes.


Subject(s)
Apoptosis/drug effects , Carcinogenesis/immunology , Immunotherapy , Necroptosis/drug effects , Neoplasms/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Carcinogenesis/genetics , Humans , Necroptosis/genetics , Necroptosis/immunology , Neoplasms/therapy , Signal Transduction/genetics
8.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366204

ABSTRACT

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , West Nile Fever/immunology , West Nile virus/physiology , Animals , Central Nervous System/metabolism , Chemokines/immunology , Leukocytes/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Necrosis , Neurons/metabolism
9.
mBio ; 6(1): e02095-14, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25691590

ABSTRACT

UNLABELLED: Type III secretion systems (T3SS) translocate effector proteins into target cells in order to disrupt or modulate host cell signaling pathways and establish replicative niches. However, recognition of T3SS activity by cytosolic pattern recognition receptors (PRRs) of the nucleotide-binding domain leucine rich repeat (NLR) family, either through detection of translocated products or membrane disruption, induces assembly of multiprotein complexes known as inflammasomes. Macrophages infected with Yersinia pseudotuberculosis strains lacking all known effectors or lacking the translocation regulator YopK induce rapid activation of both the canonical NLRP3 and noncanonical caspase-11 inflammasomes. While this inflammasome activation requires a functional T3SS, the precise signal that triggers inflammasome activation in response to Yersinia T3SS activity remains unclear. Effectorless strains of Yersinia as well as ΔyopK strains translocate elevated levels of T3SS substrates into infected cells. To dissect the contribution of pore formation and translocation to inflammasome activation, we took advantage of variants of YopD and LcrH that separate these functions of the T3SS. Notably, YopD variants that abrogated translocation but not pore-forming activity failed to induce inflammasome activation. Furthermore, analysis of individual infected cells revealed that inflammasome activation at the single-cell level correlated with translocated levels of YopB and YopD themselves. Intriguingly, LcrH mutants that are fully competent for effector translocation but produce and translocate lower levels of YopB and YopD also fail to trigger inflammasome activation. Our findings therefore suggest that hypertranslocation of YopD and YopB is linked to inflammasome activation in response to the Yersinia T3SS. IMPORTANCE: The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Inflammasomes/metabolism , Type III Secretion Systems/metabolism , Yersinia/physiology , Animals , Cell Line , Cell Survival , Epithelial Cells/microbiology , Epithelial Cells/physiology , Humans , Macrophages/microbiology , Macrophages/physiology , Mice , Protein Transport
10.
Proc Natl Acad Sci U S A ; 111(20): 7385-90, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24799700

ABSTRACT

Toll-like receptor signaling and subsequent activation of NF-κB- and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.


Subject(s)
Caspase 1/metabolism , Caspase 8/metabolism , Immunity, Innate , MAP Kinase Signaling System , NF-kappa B/metabolism , Animals , Apoptosis , Bacterial Proteins/genetics , Enzyme Activation , Fas-Associated Death Domain Protein/metabolism , Gene Expression Regulation, Enzymologic , Mice , Mice, Transgenic , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Yersinia Infections/microbiology , Yersinia pseudotuberculosis
11.
J Exp Med ; 211(4): 653-68, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24638169

ABSTRACT

Microbial infection triggers assembly of inflammasome complexes that promote caspase-1-dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11-dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.


Subject(s)
Carrier Proteins/metabolism , Immune Evasion/immunology , Inflammasomes/metabolism , Salmonella typhimurium/metabolism , Aconitate Hydratase/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Bacterial Secretion Systems , Calcium-Binding Proteins/metabolism , Citrate (si)-Synthase/metabolism , Citric Acid Cycle , Genes, Bacterial/genetics , Immunity , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mutation/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...