Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(45): 101410-101423, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37653195

ABSTRACT

Platinum (Pt) is one of the most precious metals with a variety of unique industrial applications, particularly in catalytic reactions, being its recovery, after use, essential. Therefore, this work proposes a simplified hydrometallurgical strategy to recover Pt efficiently from the original (no milling) spent petrochemical Pt catalyst using an economical and environmentally sustainable process. To that end, the effectiveness of a two-step workflow constituted by one microwave-assisted leaching step using a mixture of hydrochloric acid (HCl) and hydrogen peroxide (H2O2) followed by one ion-exchange purification step was developed and optimized. It was found that complete dissolution of Pt plus aluminum (Al) and iron (Fe) from the roasted original size catalyst was achieved after microwave-assisted leaching with 25% (v/v) HCl and 2% (v/v) H2O2 during 2 cycles of 60 s. Furthermore, a strong anionic exchange (Purogold™ A194) resin used for subsequent selective purification of Pt from Al and Fe was capable of effective separation of the metals: Pt in the eluate presented a purity of 98.1%, while Al, in the raffinate, presented a purity of 99.8%. In summation, it can be concluded that the overall process is a potentially good addition to a more circular economy as it manages to recover high-quality Pt for being reused as well as other by-products, whilst minimizing the consume of reagents, leaching time (and, thus, energy), and environmental impacts.


Subject(s)
Petroleum , Platinum , Hydrogen Peroxide , Aluminum , Recycling
3.
Environ Sci Pollut Res Int ; 29(51): 76907-76918, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35670941

ABSTRACT

Petroleum spent catalysts may contain a significant amount of palladium (Pd) together with other major [aluminum (Al), nickel (Ni), and molybdenum (Mo)] and minor [iron (Fe), lead (Pb), and vanadium (V)] elements. Due to the high intrinsic value of Pd and its scarcity in natural ores, its recovery is highly desired. For this purpose, the ability of a strong basic anionic- resin, Purogold™ A194 resin, to remove Pd from the solution was assessed. Data from kinetic and equilibrium studies, performed under batch mode in 1 mol/L of NaCl and 1 mol/L of HNO3 at (21 ± 1) °C, revealed that the removal of Pd fits well a pseudo-second-order kinetic model [constant rate value, k2, of (0.062 ± 0.010) g/(mmol.min)] and a Langmuir isotherm [maximum sorption capacity of (0.80 ± 0.02) mmol/g with an affinity of resin binding sites towards Pd, KL, of (0.18 ± 0.02) L/mmol], respectively. The sorption of other metals (Al, Fe, Pb, Mo, Ni, and V) that may be present in spent catalyst leachates was tested under similar experimental conditions [CM = 2.5 mmol/L, 1 mol/L of NaCl and 1 mol/L of HNO3 at (21 ± 1) °C)] and the resin showed little affinity towards each one of these metals. Also, simultaneous multi-element batch experiments with Pd and the major components (M = Al, Ni, and Mo ions) ([M]/[Pd] molar ratios between 3.4 and 52 were used) pointed out that the resin is highly selective towards Pd suggesting that the resin can be used in the selective recovery of Pd from petroleum spent catalyst leachates.


Subject(s)
Palladium , Petroleum , Ion Exchange , Kinetics , Nickel , Vanadium , Adsorption , Aluminum , Molybdenum , Sodium Chloride , Lead , Ions , Anions , Iron , Hydrogen-Ion Concentration
4.
Waste Manag ; 135: 90-97, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34478952

ABSTRACT

This work proposes an efficient and simple hydrometallurgical process based on a chlorination step followed by an ion-exchange step for recycling gold (Au) from a waste printed circuit boards (WPCBs) enriched in Au resulting from a first leaching step under mild oxidizing conditions for extracting Cu and other base metals. Under optimized [3.5 mol/L HCl and 0.46 mol/L NaClO, with a liquid/solid (L/S) ratio of 40, at 40 °C for 3 h with agitation] leaching conditions, 95% Au was extracted from the residue originating a multi-metal solution containing 1.0% Au. Subsequently, Au (initial concentration: 38 µmol/L) present in the multimetal-leached solution was purified in continuous mode using two strong anionic exchange resins: DOW™ XZ-91419.00 and Purogold™ A194. Both resins were suitable in purifying Au from the multimetal-leaching solution, with at least 70% of Au recovered relative to the initial residue. When the DOW™ XZ-91419.00 resin was used, a solution containing 1.7 mmol/L Au with a purity grade of 94% was obtained, with Pb and Sn being the major contaminants (3.3 and 2.4%, respectively). For Purogold™ A194 resin, a solution containing 0.73 mmol/L Au with a purity grade of 92% was achieved; Ag, Pb and Pd were the major contaminants (1.4, 3.6 and 1.8%, respectively). In conclusion, this work demonstrates a novel hydrometallurgical strategy for recycling Au with a high grade from WPCBs, minimizing the number of leaching and purification steps and the amount of waste created.


Subject(s)
Electronic Waste , Gold , Copper , Electronic Waste/analysis , Halogenation , Recycling
5.
Waste Manag ; 126: 231-238, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33774583

ABSTRACT

A large amount of waste printed circuit boards (WPCBs) that contain valuable metals, namely gold and copper, are produced annually. WPCBs are constituted by a multi-layer structure reinforced by a brominated epoxy resin (BER), which is very difficult to separate into the metallic and non-metallic components. The main aim of this work was to evaluate the ability of microwave for assisting in the delamination of WPCBs by organic swelling of the BER. Additionally, its performance was compared with other strategies (thermostatic and ultrasonic baths) previously described in the literature. Firstly, a library of solvents [dimethyl formamide (DMF), dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), cyclohexanone (CH), γ-butyrolactone (GBL), tetrahydrofurfuryl alcohol (TFA) and dimethyl malonate (DM)] was selected based on the calculation of Hansen solubility parameters plus others exclusion parameters and their performance to detach all components of WPCBs (25 mm2) was tested by microwave (200 °C for 10 min), thermostatic (153 °C for 10 min) and ultrasonic (60 °C for 25 h) baths. Microwave showed to be the most efficient approach and the delamination order for WPCBs was: NMP > DMSO >DMF > DMAc. Subsequent optimization of key parameters (dimensions of WPCBs and reaction time) were obtained: dimensions of 225 mm2 using NMP (solid/liquid ratio of 300 g/L) at 200 °C with 2 cycles of 10 min. In conclusion, microwave-assisted swelling revealed to be more efficient and faster process to delaminate WPCBs into metallic and non-metallic components, which are important advantages when envisaging a future industrial waste management implementation.


Subject(s)
Electronic Waste , Epoxy Resins , Microwaves , Recycling , Solvents
6.
Appl Microbiol Biotechnol ; 105(4): 1379-1394, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33521847

ABSTRACT

The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.


Subject(s)
Metal Nanoparticles , Nanoparticles , Humans , Ions , Metal Nanoparticles/toxicity , Metals , Nanoparticles/toxicity , Oxidative Stress , Oxides
7.
Appl Biochem Biotechnol ; 193(3): 607-618, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32500426

ABSTRACT

Pseudomonas fluorescens has the ability to produce the siderophore pyoverdine, a biotechnologically significant iron chelator, which has a wide range of potential applications, such as in agriculture (iron fertilizers) and medicine (development of antibiotics). The present work aimed to evaluate the influence of culture medium composition on the production of siderophores by P. fluorescens DSM 50090, an industrial relevant strain. It was found that the bacterium grown in minimal medium succinate (MMS) had a higher siderophore production than in King B medium. The replacement of succinate by glycerol or dextrose, in minimal medium, originated lower siderophore production. The increase of succinate concentration, the addition of amino acids or the reduction of phosphate in the culture medium did not improve siderophore production by P. fluorescens. The results obtained strongly suggest that (i) MMS is more appropriate than King B for large-scale production of siderophores; (ii) the modification of the culture medium composition, particularly the type of carbon source, influences the level of siderophore secreted; (iii) the production of siderophore by P. fluorescens seems to be a tightly regulated process; once a maximum siderophore concentration has been reached in the culture medium, the bacterium seems to be unable to produce more compound.


Subject(s)
Culture Media/chemistry , Culture Media/pharmacology , Pseudomonas fluorescens/growth & development , Siderophores/biosynthesis
8.
Waste Manag ; 113: 342-350, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32580102

ABSTRACT

This review paper aims to present and analyse data from the most recent literature (between 2007 and 2019) published on the topic of manganese (Mn) and zinc (Zn) recovery from zinc-based spent batteries through hydrometallurgical methods. In a first attempt, a detailed comparative assessment of the metals leaching performance (as well as the experimental variables that influence its performance) reported in the various studies with strong acid or bases, potentially supplemented by complexing or reducing agents, as well as the reactions involved, are reviewed and discussed. All data point out that the use of a reductant is needed to fully solubilize Mn from spent batteries during the leaching process. Comparison of the data seem to indicate that most reductants have similar performance and, therefore, the choice of a reductant should be focused on low cost or even waste materials. In a second attempt, the separative processes mostly described in the literature to recover Mn and Zn from leachates are reviewed emphasizing the strengths and weaknesses of each technique. Solvent extraction is the most widely tested process for this aim. A thorough comparison of existing data indicates that, in general, neutral extractants have higher potential for selective separation of Zn and Mn. Furthermore, although chemical precipitation is a simple process, low pure final metal hydroxide products are expected to be achieved when alkaline precipitation is implemented comparatively to the Mn oxidative precipitation where Mn can be recovered selectively as a solid of manganese (IV) oxide.


Subject(s)
Manganese , Zinc , Electric Power Supplies , Metals , Recycling
9.
Front Plant Sci ; 10: 1335, 2019.
Article in English | MEDLINE | ID: mdl-31781134

ABSTRACT

Currently, fertilization with synthetic chelates is the most effective agricultural practice to prevent iron (Fe) deficiencies in crops, especially in calcareous soils. Because these compounds are not biodegradable, they are persistent in the environment, and so, there is the risk of metal leaching from the soils. Thus, new, more environment-friendly efficient solutions are needed to solve iron-deficiency-induced chlorosis (IDIC) in crops grown in calcareous soils. Therefore, the central aim of this work was to prepare new freeze-dried Fe products, using a biotechnological-based process, from two siderophores bacterial (Azotobacter vinelandii and Bacillus subtilis) cultures (which previously evidenced high Fe complexation ability at pH 9) and test their capacity for amending IDIC of soybean grown in calcareous soils. Results have shown that A. vinelandii iron fertilizer was more stable and interacted less with calcareous soils and its components than B. subtilis one. This behavior was noticeable in pot experiments where chlorotic soybean plants were treated with both fertilizer products. Plants treated with A. vinelandii fertilizer responded more significantly than those treated with B. subtilis one, when evaluated by their growth (20% more dry mass than negative control) and chlorophyll development (30% higher chlorophyll index than negative control) and in most parameters similar to the positive control, ethylenediamine-di(o-hydroxyphenylacetic acid). On average, Fe content was also higher in A. vinelandii-treated plants than on B. subtilis-treated ones. Results suggest that this new siderophore-based formulation product, prepared from A. vinelandii culture, can be regarded as a possible viable alternative for replacing the current nongreen Fe-chelating fertilizers and may envisage a sustainable and environment-friendly mending IDIC of soybean plants grown in calcareous soils.

10.
Aquat Toxicol ; 214: 105265, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31416018

ABSTRACT

The increasing use of nanoparticles (NPs) unavoidably enhances their unintended introduction into the aquatic systems, raising concerns about their nanosafety. This work aims to assess the toxicity of five oxide NPs (Al2O3, Mn3O4, In2O3, SiO2 and SnO2) using the freshwater alga Pseudokirchneriella subcapitata as a primary producer of ecological relevance. These NPs, in OECD medium, were poorly soluble and unstable (displayed low zeta potential values and presented the tendency to agglomerate). Using the algal growth inhibition assay and taking into account the respective 72 h-EC50 values, it was possible to categorize the NPs as: toxic (Al2O3 and SnO2); harmful (Mn3O4 and SiO2) and non-toxic/non-classified (In2O3). The toxic effects were mainly due to the NPs, except for SnO2 which toxicity can mainly be attributed to the Sn ions leached from the NPs. A mechanistic study was undertaken using different physiological endpoints (cell membrane integrity, metabolic activity, photosynthetic efficiency and intracellular ROS accumulation). It was observed that Al2O3, Mn3O4 and SiO2 induced an algistatic effect (growth inhibition without loss of membrane integrity) most likely as a consequence of the cumulative effect of adverse outcomes: i) reduction of the photosynthetic efficiency of the photosystem II (ФPSII); ii) intracellular ROS accumulation and iii) loss of metabolic activity. SnO2 NPs also provoked an algistatic effect probably as a consequence of the reduction of ФPSII since no modification of intracellular ROS levels and metabolic activity were observed. Altogether, the results here presented allowed to categorize the toxicity of the five NPs and shed light on the mechanisms behind NPs toxicity in the green alga P. subcapitata.


Subject(s)
Chlorophyceae/cytology , Environmental Exposure , Fresh Water , Nanoparticles/toxicity , Oxides/toxicity , Cell Death/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Chlorophyceae/metabolism , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Silicon Dioxide/toxicity , Water Pollutants, Chemical/toxicity
11.
Appl Microbiol Biotechnol ; 103(15): 6257-6269, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31152204

ABSTRACT

In this work, the physicochemical characterization of five (Al2O3, In2O3, Mn3O4, SiO2 and SnO2) nanoparticles (NPs) was carried out. In addition, the evaluation of the possible toxic impacts of these NPs and the respective modes of action were performed using the yeast Saccharomyces cerevisiae. In general, in aqueous suspension, metal(loid) oxide (MOx) NPs displayed an overall negative charge and agglomerated; these NPs were practically insoluble (dissolution < 8%) and did not generate detectable amounts of reactive oxygen species (ROS) under abiotic conditions. Except In2O3 NPs, which did not induce an obvious toxic effect on yeast cells (up to 100 mg/L), the other NPs induced a loss of cell viability in a dose-dependent manner. The comparative analysis of the loss of cell viability induced by the NPs with the ions released by NPs (NPs supernatant) suggested that SiO2 toxicity was mainly caused by the NPs themselves, Al2O3 and SnO2 toxic effects could be attributed to both the NPs and the respective released ions and Mn3O4 harmfulness could be mainly due to the released ions. Al2O3, Mn3O4, SiO2 and SnO2 NPs induced the loss of metabolic activity and the generation of intracellular ROS without permeabilization of plasma membrane. The co-incubation of yeast cells with MOx NPs and a free radical scavenger (ascorbic acid) quenched intracellular ROS and significantly restored cell viability and metabolic activity. These results evidenced that the intracellular generation of ROS constituted the main cause of the cytotoxicity exhibited by yeasts treated with the MOx NPs. This study highlights the importance of a ROS-mediated mechanism in the toxicity induced by MOx NPs.


Subject(s)
Metal Nanoparticles/toxicity , Metalloids/toxicity , Microbial Viability/drug effects , Oxides/toxicity , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Chemical Phenomena , Dose-Response Relationship, Drug , Metabolism/drug effects , Metal Nanoparticles/chemistry , Metalloids/chemistry , Oxides/chemistry , Solubility
12.
Sci Total Environ ; 682: 779-799, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31146074

ABSTRACT

In order to address the ever-increasing problem of the world's population food needs, the optimization of farming crops yield, the combat of iron deficiency in plants (chlorosis) and the elimination/reduction of crop pathogens are of key challenges to solve. Traditional ways of solving these problems are either unpractical on a large scale (e.g. use of manure) or are not environmental friendly (e.g. application of iron-synthetic fertilizers or indiscriminate use of pesticides). Therefore, the search for greener substitutes, such as the application of siderophores of bacterial source or the use of plant-growth promoting bacteria (PGPB), is presented as a very promising alternative to enhance yield of crops and performance. However, the use of microorganisms is not a risk-free solution and the potential biohazards associated with the utilization of bacteria in agriculture should be considered. The present work gives a current overview of the main mechanisms associated with the use of bacteria in the promotion of plant growth. The potentiality of several bacterial genera (Azotobacter, Azospirillum, Bacillus, Pantoea, Pseudomonas and Rhizobium) regarding to siderophore production capacity and other plant growth-promoting properties are presented. In addition, the field performance of these bacteria genera as well as the biosafety aspects related with their use for agricultural proposes are reviewed and discussed.


Subject(s)
Agriculture/methods , Soil Microbiology , Crops, Agricultural/growth & development , Fertilizers , Plant Development , Plant Roots
13.
AMB Express ; 9(1): 78, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31139942

ABSTRACT

Iron deficiency is one of the main causes of chlorosis in plants, which leads to losses in field crops quality and yield. The use of synthetic chelates to prevent or correct iron-deficiency is not satisfactory mainly due to their poor biodegradability. The present work aimed to search suitable microorganisms to produce alternative, environment-friendly iron-chelating agents (siderophores). For this purpose, the performance of five bacteria (Azotobacter vinelandii, Bacillus megaterium, Bacillus subtilis, Pantoea allii and Rhizobium radiobacter) was evaluated, regarding siderophore production kinetics, level of siderophore production (determined by chrome azurol S, CAS method), type of siderophore produced (using Arnow and Csaky's tests) and iron-chelating capacity at pH 9.0. All bacteria were in stationary phase at 24 h, except A. vinelandii (at 72 h) and produced the maximum siderophore amount (80-140 µmol L-1) between 24 and 48 h, with the exception of A. vinelandii (at 72 h). The analysis of culture filtrates revealed the presence of catechol-type siderophores for B. subtilis and R. radiobacter and hydroxamate-type siderophores for B. megaterium and P. allii. In the case of A. vinelandii, both siderophore-types (catechol and hydroxamates) were detected. The highest iron-chelating capacity, at pH 9.0, was obtained by B. megaterium followed by B. subtilis and A. vinelandii. Therefore, these three bacteria strains are the most promising bacteria for siderophore production and chlorosis correction under alkaline conditions.

14.
Chem Res Toxicol ; 32(2): 245-254, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30656935

ABSTRACT

The expansion of the industrial use of nickel oxide (NiO) nanoparticles (NPs) raises concerns about their potential adverse effects. Our work aimed to investigate the mechanisms of toxicity induced by NiO NPs, using the yeast Saccharomyces cerevisiae as a cell model. Yeast cells exposed to NiO NPs exhibited typical hallmarks of regulated cell death (RCD) by apoptosis [loss of cell proliferation capacity (cell viability), exposure of phosphatidylserine at the outer cytoplasmic membrane leaflet, nuclear chromatin condensation, and DNA damage] in a process that required de novo protein synthesis. The execution of yeast cell death induced by NiO NPs is Yca1p metacaspase-dependent. NiO NPs also induced a decrease in the mitochondrial membrane potential and an increase in the frequency of respiratory-deficient mutants, which supports the involvement of mitochondria in the cell death process. Cells deficient in the apoptosis-inducing factor ( aif1Δ) displayed higher tolerance to NiO NPs, which reinforces the involvement of mitochondria in RCD by apoptosis. In summary, this study shows that NiO NPs induce caspase- and mitochondria-dependent apoptosis in yeast. Our results warn about the possible harmful effects associated with the use of NiO NPs.


Subject(s)
Apoptosis/drug effects , Mitochondria/drug effects , Nanoparticles/toxicity , Nickel/chemistry , Saccharomyces cerevisiae/metabolism , Caspases/metabolism , DNA Damage/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , NADH, NADPH Oxidoreductases/metabolism , Nanoparticles/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/metabolism
15.
Sci Total Environ ; 647: 1586-1593, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180362

ABSTRACT

In order to find new greener solutions for iron (Fe) induced chlorosis, two new chelating agents, N,N-dihydroxy-N,N'-diisopropylhexanediamide (DPH) and Azotochelin (AZO), were assessed for its effectiveness in mending induced chlorosis in soybean (Glycine max). DPH-Fe and AZO-Fe complexes were firstly tested for their soil interactions and capability to maintain Fe in a bioavailable form. Secondly, 57Fe-chelates of DPH and AZO were applied to the soil in a pot experiment with chlorotic soybean plants. Their growth, SPAD chlorophyll index, and the Fe concentration in plant tissues and the remaining soil were evaluated. An isotope deconvolution analysis by using the concentration of the Fe isotopes was used to distinguish the Fe coming from soil and from the 57Fe labelled fertilizer treatments. AZO and DPH have shown different interactions with soil and its components, with AZO showing less interaction than DPH. The application of AZO and DPH resulted in SPAD increase and Fe content. However, it was found that the Fe in plants had not come from the fertilizer application, but instead from natural sources. This is likely due to dissolution phenomena aided by the chelates added. Overall, AZO and DPH have shown good results in amending Fe induced chlorosis in calcareous soils and for this reason should be regarded as good green-candidates for Fe plant nutrition in calcareous soils.


Subject(s)
Glycine max/physiology , Hexanes/chemistry , Iron Chelating Agents/chemistry , Lysine/analogs & derivatives , Iron , Lysine/chemistry , Soil/chemistry , Glycine max/growth & development
16.
Aquat Toxicol ; 204: 80-90, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30205248

ABSTRACT

Over the last decade, concerns have been raised regarding the potential health and environmental effects associated with the release of metal oxide nanoparticles (NPs) into ecosystems. In the present work, the potential hazards of nickel oxide (NiO) NPs were investigated using the ecologically relevant freshwater alga Pseudokirchneriella subcapitata. NiO NP suspensions in algal OECD medium were characterized with regard to their physicochemical properties: agglomeration, surface charge, stability (dissolution of the NPs) and abiotic reactive oxygen species (ROS) production. NiO NPs formed loose agglomerates and released Ni2+. NiO NPs presented a 72 h-EC50 of 1.6 mg L-1, which was evaluated using the algal growth inhibition assay and allowed this NP to be classified as toxic. NiO NPs caused the loss of esterase activity (metabolic activity), the bleaching of photosynthetic pigments and the intracellular accumulation of reactive oxygen species (ROS) in the absence of the disruption of plasma membrane integrity. NiO NPs also disturbed the photosynthetic process. A reduction in the photosynthetic efficiency (ΦPSII) accompanied by a decrease in the flow rate of electrons through the photosynthetic chain was also observed. The leakage of electrons from the photosynthetic chain may be the origin of the ROS found in the algal cells. The exposure to NiO NPs led to the arrest of the cell cycle prior to the first cell division (primary mitosis), an increase in cell volume and the presence of aberrant morphology in the algal cells. In this work, the use of different approaches allowed new clues related to the toxicity mechanisms of NiO NPs to be obtained. This work also contributes to the characterization of the environmental and toxicological hazards of NiO NPs and provides information on the possible adverse effects of these NPs on aquatic systems.


Subject(s)
Chlorophyta/drug effects , Fresh Water , Nanoparticles/toxicity , Nickel/toxicity , Toxicity Tests , Cell Cycle/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorophyta/cytology , Chlorophyta/growth & development , Chlorophyta/metabolism , Photosynthesis/drug effects , Pigments, Biological/metabolism , Reactive Oxygen Species/metabolism , Suspensions , Water Pollutants, Chemical/toxicity
17.
Chem Res Toxicol ; 31(8): 658-665, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30043610

ABSTRACT

The present work aimed to elucidate whether the toxic effects of nickel oxide (NiO) nanoparticles (NPs) on the yeast Saccharomyces cerevisiae were associated with oxidative stress (OS) and what mechanisms may have contributed to this OS. Cells exposed to NiO NPs accumulated superoxide anions and hydrogen peroxide, which were intracellularly generated. Yeast cells coexposed to NiO NPs and antioxidants (l-ascorbic acid and N- tert-butyl-α-phenylnitrone) showed quenching of reactive oxygen species (ROS) and increased resistance to NiO NPs, indicating that the loss of cell viability was associated with ROS accumulation. Mutants lacking mitochondrial DNA (ρ0) displayed reduced levels of ROS and increased resistance to NiO NPs, which suggested the involvement of the mitochondrial respiratory chain in ROS production. Yeast cells exposed to NiO NPs presented decreased levels of reduced glutathione (GSH). Mutants deficient in GSH1 ( gsh1Δ) or GSH2 ( gsh2Δ) genes displayed increased levels of ROS and increased sensitivity to NiO NPs, which underline the central role of GSH against NiO NPs-induced OS. This work suggests that the increased levels of intracellular ROS (probably due to the perturbation of the electron transfer chain in mitochondria) combined with the depletion of GSH pool constitute important mechanisms of NiO NPs-induced loss of cell viability in the yeast S. cerevisiae.


Subject(s)
Metal Nanoparticles/toxicity , Nickel/toxicity , Oxidative Stress , Saccharomyces cerevisiae/drug effects , Antioxidants/pharmacology , DNA, Mitochondrial/metabolism , Electron Transport , Glutathione/metabolism , Mutation , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism
18.
Chemosphere ; 208: 390-398, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29885505

ABSTRACT

Several tools have been developed and applied to evaluate the metal pollution status of sediments and predict their potential ecological risk assessment. To date, a comprehensive relationship between the information given by these sediment tools for predicting metal bioavailability and the effective toxicity observed is lacking. In this work, the possible inter-correlations between the data outcoming from using several qualitative evaluation tools of the sediment contamination (contamination factor, CF, the enrichment factor, EF, or the geoaccumulation index, Igeo), metal speciation on sediments (evaluated by the modified BCR sequential extraction procedure) and free metal concentrations in pore waters were studied. It was also our aim to evaluate if these assessment tools could be used for predicting the pore waters toxicity data as toxicity proxy. Principal component analysis and cluster analysis revealed that two quality indices used (CF and EF) were highly correlatable with the more labile fractions from BCR sediment speciation. However, neither of these parameters did correlate with the toxicity of pore waters measured by the chronic toxicity (72 h) in Pseudokirchneriella subcapitata. In contrast, the toxic effects of the given total metal load in sediments were better evaluated by using an additive metal approach using pore water free metal concentrations.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Biological Availability , Chlorophyta , Cluster Analysis , Environmental Pollution/analysis , Geologic Sediments/analysis , Metals, Heavy/toxicity , Porosity , Principal Component Analysis , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Appl Microbiol Biotechnol ; 102(6): 2827-2838, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29423633

ABSTRACT

The increasing use of nanoparticles (NPs) has spurred concerns about their toxic effects. This work aimed to assess the potential hazards of nickel oxide (NiO) NPs using the yeast Saccharomyces cerevisiae as a cell model. Yeast cells exposed for 6 h to 100 mg/L NiO NPs presented reduced metabolic activity (esterase activity and FUN-1 dye processing) and enhanced accumulation of reactive oxygen species. NiO NPs induced the loss of cell viability in a dose-dependent manner. Study of the dissolution of NiO NPs in aqueous media, together with the toxicological data, suggests that the nickel released by the NPs cannot explain all the toxic effects observed in S. cerevisiae caused by the NPs. Transmission electron microscopy observations revealed that NiO NPs were adsorbed onto cell surface but did not enter into yeast cells. Isogenic mutants (cwp1∆ and cwp2∆) with increased cell wall porosity did not display enhanced susceptibility to NiO NPs compared to the wild type strain. Our results suggest that NiO NPs exert their toxic effect by an indirect mechanism. This work contributes to knowledge of the potential hazards of NiO NPs and to the elucidation of their mechanisms of toxic action.


Subject(s)
Microbial Viability/drug effects , Nanoparticles/toxicity , Nickel/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Adsorption , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Reactive Oxygen Species/analysis , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/ultrastructure , Surface Properties
20.
Talanta ; 175: 53-68, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28842029

ABSTRACT

Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view.

SELECTION OF CITATIONS
SEARCH DETAIL