Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 16151, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385829

ABSTRACT

Hevea brasiliensis is a native hyperdiverse tree species in the Amazon basin with great economic importance since it produces the highest quality natural rubber. H. brasiliensis, in its natural habitat, may harbor fungal endophytes that help defend against phytopathogenic fungi. In this work, we investigated the fungal endophytic communities in two pristine areas in Eastern Amazon (Anavilhanas National Park - ANP and Caxiuanã National Forest - CNF) at different spatial scales: regional, local, individual (tree), and intra-individual (leaflet). Using a culture-based approach, 210 fungal endophytes were isolated from 240 sampling units and assigned to 46 distinct MOTUs based on sequencing of the nrITS DNA. The community compositions of the endophytomes are different at both regional and local scales, dominated by very few taxa and highly skewed toward rare taxa, with many endophytes infrequently isolated across hosts in sampled space. Colletotrichum sp. 1, a probably latent pathogen, was the most abundant endophytic putative species and was obtained from all individual host trees in both study areas. Although the second most abundant putative species differed between the two collection sites, Clonostachys sp. 1 and Trichoderma sp. 1, they are phylogenetically related (Hypocreales) mycoparasites. Thus, they probably exhibit the same ecological function in the foliar endosphere of rubber tree as antagonists of its fungal pathogens.


Subject(s)
Ecology , Endophytes/genetics , Hevea/microbiology , Phylogeny , Biodiversity , Brazil , DNA, Fungal/genetics , Ecosystem , Endophytes/pathogenicity , Fungi/genetics , Fungi/pathogenicity , Hevea/genetics , Mycobiome/genetics , Plant Leaves/genetics , Plant Leaves/microbiology
2.
FEMS Yeast Res ; 16(4)2016 06.
Article in English | MEDLINE | ID: mdl-27188884

ABSTRACT

Three novel D-xylose-fermenting yeast species of Spathaspora clade were recovered from rotting wood in regions of the Atlantic Rainforest ecosystem in Brazil. Differentiation of new species was based on analyses of the gene encoding the D1/D2 sequences of large subunit of rRNA and on 642 conserved, single-copy, orthologous genes from genome sequence assemblies from the newly described species and 15 closely-related Debaryomycetaceae/Metschnikowiaceae species. Spathaspora girioi sp. nov. produced unconjugated asci with a single elongated ascospore with curved ends; ascospore formation was not observed for the other two species. The three novel species ferment D-xylose with different efficiencies. Spathaspora hagerdaliae sp. nov. and Sp. girioi sp. nov. showed xylose reductase (XR) activity strictly dependent on NADPH, whereas Sp. gorwiae sp. nov. had XR activity that used both NADH and NADPH as co-factors. The genes that encode enzymes involved in D-xylose metabolism (XR, xylitol dehydrogenase and xylulokinase) were also identified for these novel species. The type strains are Sp. girioi sp. nov. UFMG-CM-Y302(T) (=CBS 13476), Sp. hagerdaliae f.a., sp. nov. UFMG-CM-Y303(T) (=CBS 13475) and Sp. gorwiae f.a., sp. nov. UFMG-CM-Y312(T) (=CBS 13472).


Subject(s)
Fermentation , Genome, Fungal , Genomics , Saccharomycetales/classification , Saccharomycetales/metabolism , Xylose/metabolism , Brazil , Cluster Analysis , Coenzymes/metabolism , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , NAD/metabolism , NADP/metabolism , Phylogeny , RNA, Ribosomal/genetics , Saccharomycetales/genetics , Saccharomycetales/isolation & purification , Sequence Analysis, DNA , Spores, Fungal/cytology , Wood/microbiology
3.
BMC Genomics ; 15: 943, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25351875

ABSTRACT

BACKGROUND: The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS: The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS: Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.


Subject(s)
Cat Diseases/microbiology , Fungal Proteins/genetics , Sporothrix/genetics , Sporotrichosis/transmission , Virulence Factors/genetics , Adaptation, Biological , Animals , Cat Diseases/transmission , Cats , Evolution, Molecular , Genetic Speciation , Genome, Mitochondrial , Humans , Phylogeny , Sporothrix/classification , Sporothrix/pathogenicity , Sporotrichosis/microbiology , Sporotrichosis/veterinary
4.
Genome Announc ; 2(1)2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24435867

ABSTRACT

The draft genome sequence of the yeast Spathaspora arborariae UFMG-HM19.1A(T) (CBS 11463 = NRRL Y-48658) is presented here. The sequenced genome size is 12.7 Mb, consisting of 41 scaffolds containing a total of 5,625 predicted open reading frames, including many genes encoding enzymes and transporters involved in d-xylose fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...