Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 11: 1227184, 2023.
Article in English | MEDLINE | ID: mdl-37771571

ABSTRACT

Introduction: The development of patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offers an opportunity to study genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM), one of the most common inherited cardiac diseases. However, immaturity of the iPSC-CMs and the lack of a multicellular composition pose concerns over its faithfulness in disease modeling and its utility in developing mechanism-specific treatment. Methods: The Biowire platform was used to generate 3D engineered cardiac tissues (ECTs) using HCM patient-derived iPSC-CMs carrying a ß-myosin mutation (MYH7-R403Q) and its isogenic control (WT), withal ECTs contained healthy human cardiac fibroblasts. ECTs were subjected to electro-mechanical maturation for 6 weeks before being used in HCM phenotype studies. Results: Both WT and R403Q ECTs exhibited mature cardiac phenotypes, including a lack of automaticity and a ventricular-like action potential (AP) with a resting membrane potential < -75 mV. Compared to WT, R403Q ECTs demonstrated many HCM-associated pathological changes including increased tissue size and cell volume, shortened sarcomere length and disorganized sarcomere structure. In functional assays, R403Q ECTs showed increased twitch amplitude, slower contractile kinetics, a less pronounced force-frequency relationship, a smaller post-rest potentiation, prolonged AP durations, and slower Ca2+ transient decay time. Finally, we observed downregulation of calcium handling genes and upregulation of NPPB in R403Q vs. WT ECTs. In an HCM phenotype prevention experiment, ECTs were treated for 5-weeks with 250 nM mavacamten or a vehicle control. We found that chronic mavacamten treatment of R403Q ECTs: (i) shortened relaxation time, (ii) reduced APD90 prolongation, (iii) upregulated ADRB2, ATP2A2, RYR2, and CACNA1C, (iv) decreased B-type natriuretic peptide (BNP) mRNA and protein expression levels, and (v) increased sarcomere length and reduced sarcomere disarray. Discussion: Taken together, we demonstrated R403Q ECTs generated in the Biowire platform recapitulated many cardiac hypertrophy phenotypes and that chronic mavacamten treatment prevented much of the pathology. This demonstrates that the Biowire ECTs are well-suited to phenotypic-based drug discovery in a human-relevant disease model.

2.
Exp Physiol ; 108(9): 1172-1188, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493451

ABSTRACT

The role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude. This inotropic response was accompanied by a positive lusitropic response as demonstrated by reductions in time from peak contraction to 90% of relaxation and time from peak calcium transient to 90% of decay that paralleled increases in maximum contraction decay slope and maximum calcium decay slope. To establish translatability, CNP-induced changes in contractility were also assessed in rat ex vivo (isolated heart) and in vivo models. Here, the effects on force kinetics observed in ECTs mirrored those observed in both the ex vivo and in vivo model systems, whereas the increase in maximal force generation with CNP application was only detected in ECTs. In conclusion, CNP induces a positive inotropic and lusitropic response in ECTs, thus supporting an important role for CNP in the regulation of human cardiac function. The high degree of translatability between ECTs, ex vivo and in vivo models further supports a regulatory role for CNP and expands the current understanding of the translational value of human ECTs. NEW FINDINGS: What is the central question of this study? What are the acute responses to C-type natriuretic peptide (CNP) in human-engineered cardiac tissues (ECTs) on cardiac function and how well do they translate to matched concentrations in animal ex vivo and in vivo models? What is the main finding and its importance? Acute stimulation of ECTs with CNP induced positive lusitropic and inotropic effects on cardiac contractility, which closely reflected the changes observed in rat ex vivo and in vivo cardiac models. These findings support an important role for CNP in the regulation of human cardiac function and highlight the translational value of ECTs.


Subject(s)
Natriuretic Peptide, C-Type , Animals , Humans , Rats , Calcium , Myocardial Contraction/physiology , Myocytes, Cardiac , Natriuretic Peptide, C-Type/pharmacology
3.
Front Physiol ; 13: 1023563, 2022.
Article in English | MEDLINE | ID: mdl-36439258

ABSTRACT

Cardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters in vitro. HiPSC-CMs were studied in conventional 2D monolayer format, on stiff substrate (i.e., glass), and as 3D human engineered cardiac tissues (ECTs). Cardiac contractile properties were evaluated by video (i.e., pixel) and force-based analysis. CCM pulses were assessed at varying electrical 'doses' using a commercial pulse generator. A robust CCM contractile response was observed for 3D ECTs. Under comparable conditions, conventional 2D monolayer hiPSC-CMs, on stiff substrate, displayed no contractile response. 3D ECTs displayed enhanced contractile properties including increased contraction amplitude (i.e., force), and accelerated contraction and relaxation slopes under standard acute CCM stimulation. Moreover, 3D ECTs displayed enhanced contractility in a CCM pulse parameter-dependent manner by adjustment of CCM pulse delay, duration, amplitude, and number relative to baseline. The observed acute effects subsided when the CCM stimulation was stopped and gradually returned to baseline. These data represent the first study of CCM in 3D hiPSC-CM models and provide a nonclinical tool to assess various CCM device signals in 3D human cardiac tissues prior to in vivo animal studies. Moreover, this work provides a foundation to evaluate the effects of additional cardiac medical devices in 3D ECTs.

4.
Toxicol Sci ; 172(1): 89-97, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31385592

ABSTRACT

Recent advances in techniques to differentiate human induced pluripotent stem cells (hiPSCs) hold the promise of an unlimited supply of human derived cardiac cells from both healthy and disease populations. That promise has been tempered by the observation that hiPSC-derived cardiomyocytes (hiPSC-CMs) typically retain a fetal-like phenotype, raising concern about the translatability of the in vitro data obtained to drug safety, discovery, and development studies. The Biowire II platform was used to generate 3D engineered cardiac tissues (ECTs) from hiPSC-CMs and cardiac fibroblasts. Long term electrical stimulation was employed to obtain ECTs that possess a phenotype like that of adult human myocardium including a lack of spontaneous beating, the presence of a positive force-frequency response from 1 to 4 Hz and prominent postrest potentiation. Pharmacology studies were performed in the ECTs to confirm the presence and functionality of pathways that modulate cardiac contractility in humans. Canonical responses were observed for compounds that act via the ß-adrenergic/cAMP-mediated pathway, eg, isoproterenol and milrinone; the L-type calcium channel, eg, FPL64176 and nifedipine; and indirectly effect intracellular Ca2+ concentrations, eg, digoxin. Expected positive inotropic responses were observed for compounds that modulate proteins of the cardiac sarcomere, eg, omecamtiv mecarbil and levosimendan. ECTs generated in the Biowire II platform display adult-like properties and have canonical responses to cardiotherapeutic and cardiotoxic agents that affect contractility in humans via a variety of mechanisms. These data demonstrate that this human-based model can be used to assess the effects of novel compounds on contractility early in the drug discovery and development process.

5.
Cell ; 176(4): 913-927.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686581

ABSTRACT

Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.


Subject(s)
Myocytes, Cardiac/cytology , Tissue Culture Techniques/instrumentation , Tissue Engineering/methods , Action Potentials , Cell Differentiation , Cells, Cultured , Electrophysiological Phenomena , Humans , Induced Pluripotent Stem Cells/cytology , Models, Biological , Myocardium/cytology , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/cytology , Tissue Culture Techniques/methods
6.
JACC Basic Transl Sci ; 4(8): 940-958, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31909302

ABSTRACT

Heart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters. This normalization correlates with reduced neuronal injury. Therefore, CFTR therapeutics have emerged as valuable clinical tools to manage cerebrovascular dysfunction, impaired cerebral perfusion, and neuronal injury.

7.
PLoS One ; 13(5): e0197273, 2018.
Article in English | MEDLINE | ID: mdl-29791480

ABSTRACT

BACKGROUND: The SCN5A mutation, P1332L, is linked to a malignant form of congenital long QT syndrome, type 3 (LQT3), and affected patients are highly responsive to the Na+ channel blocking drug, mexiletine. In contrast, A647D is an atypical SCN5A mutation causing Brugada syndrome. An asymptomatic male with both P1332L and A647D presented with varying P wave/QRS aberrancy and mild QTc prolongation which did not shorten measurably with mexiletine. OBJECTIVE: We characterized the biophysical properties of P1332L, A647D and wild-type (WT) Na+ channels as well as their combinations in order to understand our proband's phenotype and to guide mexilitine therapy. METHODS: Na+ channel biophysics and mexilitine-binding kinetics were assessed using heterologous expression studies in CHO-K1 cells and human ventricular myocyte modeling. RESULTS: Compared to WT, P1332L channels displayed a hyperpolarizing shift in inactivation, slower inactivation and prominent late Na+ currents (INa). While A647D had no effect on the biophysical properties of INa, it reduced peak and late INa density when co-expressed with either WT or P1332L. Additionally, while P1332L channels had greater sensitivity to block by mexiletine compared to WT, this was reduced in the presence of A647D. Modelling studies revealed that mixing P1332L with A647D channels, action potential durations were shortened compared to P1332L, while peak INa was reduced compared to either A647D coexpressing with WT or WT alone. CONCLUSIONS: While A647D mitigates the lethal LQT3 phenotype seen with P1332L, it also reduces mexilitine sensitivity and decreases INa density. These results explain our proband's mild repolarization abnormality and prominent conduction defect in the atria and ventricles, but also suggest that expression of P1332L with A647D yields a novel disease phenotype for which mexiletine pharmacotherapy is no longer suitable.


Subject(s)
Brugada Syndrome/genetics , Long QT Syndrome/genetics , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Animals , Brugada Syndrome/drug therapy , Brugada Syndrome/metabolism , CHO Cells , Computer Simulation , Cricetulus , Humans , Long QT Syndrome/drug therapy , Long QT Syndrome/metabolism , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mexiletine/pharmacology , Mexiletine/therapeutic use , Models, Molecular , Monocytes/drug effects , Monocytes/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Phenotype , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/therapeutic use , Young Adult
8.
Cell Cycle ; 16(17): 1585-1600, 2017.
Article in English | MEDLINE | ID: mdl-28745540

ABSTRACT

Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21Cip1 and p27Kip1. Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.


Subject(s)
Cell Cycle Checkpoints , Homeostasis , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Aging , Animals , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cell Cycle/genetics , Cell Cycle Checkpoints/genetics , Cell Proliferation/genetics , Cyclin E/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Down-Regulation/genetics , Gene Deletion , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , MicroRNAs/genetics , Rats, Wistar
9.
Nat Commun ; 8: 14805, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28378814

ABSTRACT

Tumour necrosis factor (TNF) is a ubiquitously expressed cytokine with functions beyond the immune system. In several diseases, the induction of TNF expression in resistance artery smooth muscle cells enhances microvascular myogenic vasoconstriction and perturbs blood flow. This pathological role prompted our hypothesis that constitutively expressed TNF regulates myogenic signalling and systemic haemodynamics under non-pathological settings. Here we show that acutely deleting the TNF gene in smooth muscle cells or pharmacologically scavenging TNF with etanercept (ETN) reduces blood pressure and resistance artery myogenic responsiveness; the latter effect is conserved across five species, including humans. Changes in transmural pressure are transduced into intracellular signals by membrane-bound TNF (mTNF) that connect to a canonical myogenic signalling pathway. Our data positions mTNF 'reverse signalling' as an integral element of a microvascular mechanosensor; pathologic or therapeutic perturbations of TNF signalling, therefore, necessarily affect microvascular tone and systemic haemodynamics.


Subject(s)
Blood Pressure/physiology , Muscle, Smooth, Vascular/metabolism , Tumor Necrosis Factor-alpha/physiology , Animals , Dogs , Etanercept/pharmacology , Female , Heart Failure/prevention & control , Humans , Male , Mesocricetus , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Muscle, Skeletal/metabolism , Signal Transduction/physiology , Species Specificity , Swine , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Vasoconstriction
10.
Nat Biotechnol ; 34(10): 1066-1071, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27617738

ABSTRACT

Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been determined. We previously showed that CD4+ T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals. Here we show that these CD4+CD44hiCD62Llo T helper cells by gene expression are a distinct T-cell population defined by ChAT (CD4 TChAT). Mice lacking ChAT expression in CD4+ cells have elevated arterial blood pressure, compared to littermate controls. Jurkat T cells overexpressing ChAT (JTChAT) decreased blood pressure when infused into mice. Co-incubation of JTChAT and endothelial cells increased endothelial cell levels of phosphorylated endothelial nitric oxide synthase, and of nitrates and nitrites in conditioned media, indicating increased release of the potent vasorelaxant nitric oxide. The isolation and characterization of CD4 TChAT cells will enable analysis of the role of these cells in hypotension and hypertension, and may suggest novel therapeutic strategies by targeting cell-mediated vasorelaxation.


Subject(s)
Blood Pressure/physiology , CD4-Positive T-Lymphocytes/physiology , Choline O-Acetyltransferase/metabolism , Hemostasis/physiology , Animals , Cells, Cultured , Feedback, Physiological/physiology , Female , Male , Mice , Mice, Inbred C57BL
11.
J Biol Chem ; 291(8): 4156-65, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26742842

ABSTRACT

The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory ß-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of ß-adrenergic receptors (ß-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic ß-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic ß-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by ß-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as ß-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic ß-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Isoproterenol/pharmacology , Kv Channel-Interacting Proteins/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Transcription, Genetic/drug effects , Animals , Calcineurin/genetics , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Gene Expression Regulation/drug effects , Kv Channel-Interacting Proteins/genetics , NF-kappa B/genetics , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic/genetics , Receptors, Adrenergic/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism
12.
Front Biosci (Schol Ed) ; 8(1): 143-59, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26709904

ABSTRACT

The Ca(2+)-independent transient outward K(+) current (I(to)) plays a critical role in underlying phase 1 of repolarization of the cardiac action potential and, as a result, is central to modulating excitation-contraction coupling and propensity for arrhythmia. Additionally, I(to) and its molecular constituents are consistently reduced in cardiac hypertrophy and heart failure. In this review, we discuss the physiological role of I(to) as well as the molecular basis of this current in human and canine hearts, in which I(to) has been thoroughly studied. In particular, we discuss the role of Ito; in the action potential and the mechanisms by which I(to) modulates excitation-contraction coupling. We also describe the effects of mutations in the subunits constituting the Ito channel as well as the role of I(to) in the failing myocardium. Finally, we review pharmacological modulation of I(to) and discuss the evidence supporting the hypothesis that restoration of I(to) in the setting of heart failure may be therapeutically beneficial by enhancing excitation-contraction coupling and cardiac function.


Subject(s)
Heart Failure/physiopathology , Heart/physiopathology , Potassium Channels/physiology , Action Potentials , Animals , Heart Failure/drug therapy , Humans , Molecular Targeted Therapy
13.
Nat Commun ; 6: 6018, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25598495

ABSTRACT

Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Heart Atria/metabolism , Heart Atria/physiopathology , Physical Exertion/physiology , Tumor Necrosis Factor-alpha/metabolism , Animals , Heart Rate/physiology , Male , Mice , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
14.
J Mol Cell Cardiol ; 75: 100-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25073062

ABSTRACT

Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating that the inhibitory effect of Syn-1A on KATP channels is not due to direct competition between Syn-1A and Kir6.2 for PIP2 binding. At high-dose PIP2, however, inhibition of KATP currents by Syn-1A-5RK/A was greatly reduced, likely overridden by the direct activating effect of PIP2 on KATP channels. Finally, depleting endogenous PIP2 with polyphosphoinositide phosphatase synaptojanin-1 known to disperse Syn-1A clusters, freed Syn-1A from Syn-1A clusters to bind SUR2A, causing optimal inhibition of KATP channels. These results taken together led us to conclude that PIP2 affects cardiac KATP channels not only by its actions on the channel directly but also by multi-modal effects of dynamically modulating Syn-1A mobility from Syn-1A clusters and thereby the availability of Syn-1A to inhibit KATP channels via interaction with SUR2A on the plasma membrane.


Subject(s)
KATP Channels/metabolism , Myocardium/metabolism , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Sulfonylurea Receptors/metabolism , Syntaxin 1/metabolism , Animals , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Male , Mice, Inbred C57BL , Potassium Channels, Inwardly Rectifying/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Rats , Syntaxin 1/chemistry
15.
Nat Methods ; 10(8): 781-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793239

ABSTRACT

Directed differentiation protocols enable derivation of cardiomyocytes from human pluripotent stem cells (hPSCs) and permit engineering of human myocardium in vitro. However, hPSC-derived cardiomyocytes are reflective of very early human development, limiting their utility in the generation of in vitro models of mature myocardium. Here we describe a platform that combines three-dimensional cell cultivation with electrical stimulation to mature hPSC-derived cardiac tissues. We used quantitative structural, molecular and electrophysiological analyses to explain the responses of immature human myocardium to electrical stimulation and pacing. We demonstrated that the engineered platform allows for the generation of three-dimensional, aligned cardiac tissues (biowires) with frequent striations. Biowires submitted to electrical stimulation had markedly increased myofibril ultrastructural organization, elevated conduction velocity and improved both electrophysiological and Ca(2+) handling properties compared to nonstimulated controls. These changes were in agreement with cardiomyocyte maturation and were dependent on the stimulation rate.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Tissue Engineering/methods , Cell Differentiation/physiology , Electric Stimulation , Electrophysiological Phenomena , Humans , Microscopy, Electron, Transmission , Myocardium/ultrastructure
16.
Pflugers Arch ; 464(3): 295-305, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22772476

ABSTRACT

Phospholamban (PLN) is a 52 amino acid integral membrane protein of the sarcoplasmic reticulum (SR) that exists in both monomeric and pentameric forms. In its unphosphorylated state, PLN inhibits the SR Ca(2+) ATPase (SERCA). This inhibition is relieved when PLN is phosphorylated as a result of ß-adrenergic stimulation of the heart. Consistent with some predictions from molecular models and from functional studies of PLN incorporated into planar lipid bilayers, it has also been postulated that pentameric PLN can also form ion-selective channels. Other molecular models contradict this hypothesis, however. In the work reported here, we used the Ca(2+)-sensitive fluorescent dye Fura-2, to examine the passive Ca(2+) permeability of the SR membrane in vesicles derived from cardiac ventricle. We have found that phosphorylation of PLN by protein kinase A (PKA) leads to an increase in the rate of Ca(2+) leak from Ca(2+)-loaded SR vesicles. This enhanced rate of Ca(2+) leak from the SR is also observed when SR vesicles are incubated with a PLN specific antibody (A1) that mimics phosphorylation of PLN. The ryanodine receptor blocker ruthenium red does not affect the increased rate of Ca(2+) leak from the SR after PLN phosphorylation with PKA or after exposure to A1 antibody, arguing against a possible role of ryanodine receptors in mediating the enhanced leak. Our results are consistent with the hypothesis that phosphorylated PLN forms or regulates a Ca(2+) leak pathway in cardiac SR membranes in situ.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium Channel Blockers/pharmacology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasmic Vesicles/metabolism , Dogs , Heart Ventricles/cytology , Phosphorylation , Ruthenium Red/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology
17.
Curr Opin Pharmacol ; 11(6): 714-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22047792

ABSTRACT

Cyclic nucleotide phosphodiesterases (PDEs) encompass a large group of enzymes that regulate intracellular levels of two-second messengers, cAMP and cGMP, by controlling the rates of their degradation. More than 60 isoforms, subdivided into 11 gene families (PDE1-11), exist in mammals with at least six families (PDE1-5 and PDE8) identified in mammalian hearts. The two predominant families implicated in regulating contraction strength of the heart are PDE3 and PDE4. Studies using transgenic models in combination with family-specific PDE inhibitors have demonstrated that PDE3A, PDE4B, and PDE4D isoforms regulate cardiac contractility by modulating cAMP levels in various subcellular compartments. These studies have further uncovered contributions of PDE4B and PDE4D in preventing ventricular arrhythmias.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Heart/physiology , Myocardium/enzymology , Animals , Cyclic AMP/physiology , Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Excitation Contraction Coupling/drug effects , Heart/drug effects , Heart/physiopathology , Heart Diseases/drug therapy , Heart Diseases/metabolism , Heart Diseases/physiopathology , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Knockout , Molecular Targeted Therapy , Myocardial Contraction/drug effects , Myocardium/metabolism , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Second Messenger Systems/drug effects
18.
J Biol Chem ; 285(13): 9420-9428, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20124409

ABSTRACT

Inorganic polyphosphate (poly P) is a polymer made from as few as 10 to several hundred phosphate molecules linked by phosphoanhydride bonds similar to ATP. Poly P is ubiquitous in all mammalian organisms, where it plays multiple physiological roles. The metabolism of poly P in mammalian organisms is not well understood. We have examined the mechanism of poly P production and the role of this polymer in cell energy metabolism. Poly P levels in mitochondria and intact cells were estimated using a fluorescent molecular probe, 4',6-diamidino-2-phenylindole. Poly P levels were dependent on the metabolic state of the mitochondria. Poly P levels were increased by substrates of respiration and in turn reduced by mitochondrial inhibitor (rotenone) or an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Oligomycin, an inhibitor of mitochondrial ATP-synthase, blocked the production of poly P. Enzymatic depletion of poly P from cells significantly altered the rate of ATP metabolism. We propose the existence of a feedback mechanism where poly P production and cell energy metabolism regulate each other.


Subject(s)
Polyphosphates/metabolism , Adenosine Triphosphate/chemistry , Animals , Electrophoresis , Energy Metabolism , Fluorescent Dyes/pharmacology , Hydrolysis , Membrane Potentials , Mitochondria/metabolism , Oligomycins/chemistry , Oxidative Phosphorylation , Oxygen Consumption , Polymers/chemistry , Rats , Rats, Sprague-Dawley
19.
Arch Biochem Biophys ; 490(2): 110-7, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19706285

ABSTRACT

Ca(2+) transport by the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) is sensitive to monovalent cations. Possible K(+) binding sites have been identified in both the cytoplasmic P-domain and the transmembrane transport-domain of the protein. We measured Ca(2+) transport into SR vesicles and SERCA ATPase activity in the presence of different monovalent cations. We found that the effects of monovalent cations on Ca(2+) transport correlated in most cases with their direct effects on SERCA. Choline(+), however, inhibited uptake to a greater extent than could be accounted for by its direct effect on SERCA suggesting a possible effect of choline on compensatory charge movement during Ca(2+) transport. Of the monovalent cations tested, only Cs(+) significantly affected the Hill coefficient of Ca(2+) transport (n(H)). An increase in n(H) from approximately 2 in K(+) to approximately 3 in Cs(+) was seen in all of the forms of SERCA examined. The effects of Cs(+) on the maximum velocity of Ca(2+) uptake were also different for different forms of SERCA but these differences could not be attributed to differences in the putative K(+) binding sites of the different forms of the protein.


Subject(s)
Calcium Signaling/drug effects , Cations, Monovalent/pharmacology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Cell Line , Cesium/pharmacology , Choline/pharmacology , Dogs , Heart/drug effects , Humans , In Vitro Techniques , Kinetics , Molecular Sequence Data , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myocardium/metabolism , Rabbits , Sarcoplasmic Reticulum/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sequence Homology, Amino Acid
20.
Pflugers Arch ; 457(1): 121-35, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18458943

ABSTRACT

Anion and cation channels present in the sarcoplasmic reticulum (SR) are believed to be necessary to maintain the electroneutrality of SR membrane during Ca(2+) uptake by the SR Ca(2+) pump (SERCA). Here we incorporated canine cardiac SR ion channels into lipid bilayers and studied the effects of tamoxifen and other antiestrogens on these channels. A Cl(-) channel was identified exhibiting multiple subconductance levels which could be divided into two primary conductance bands. Tamoxifen decreases the time the channel spends in its higher, voltage-sensitive band and the mean channel current. The lower, voltage-insensitive, conductance band is not affected by tamoxifen, nor is a K(+) channel present in the cardiac SR preparation. By examining SR Ca(2+) uptake, SERCA ATPase activity, and SR ion channels in the same preparation, we also estimated SERCA transport current, SR Cl(-) and K(+) currents, and the density of SERCA, Cl(-), and K(+) channels in cardiac SR membranes.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Chloride Channels/antagonists & inhibitors , Myocardium/metabolism , Sarcoplasmic Reticulum/metabolism , Tamoxifen/pharmacology , Animals , Calcium/metabolism , Calcium-Transporting ATPases/metabolism , Clomiphene/pharmacology , Cytoplasmic Vesicles/drug effects , Cytoplasmic Vesicles/metabolism , Dogs , Electrophysiology , Lipid Bilayers , Patch-Clamp Techniques , Potassium Channels/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...