Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 23(1): 325, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104117

ABSTRACT

BACKGROUND: Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. METHODS: The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis RESULTS: TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. CONCLUSIONS: The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma.

2.
Biomedicines ; 11(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37760953

ABSTRACT

Four novel phosphanegold(I) complexes of the type [Au(PR3)(DMT)].PF6 (1-4) were synthesized from 3-Thiosemicarbano-butan-2-one oxime ligand (TBO) and precursors [Au(PR3)Cl], (where R = methyl (1), ethyl (2), tert-butyl (3), and phenyl (4)). The resulting complexes were characterized by elemental analyses and melting point as well as various spectroscopic techniques, including FTIR and (1H, 13C, and 31P) NMR spectroscopy. The spectroscopic data confirmed the coordination of TBO ligands to phosphanegold(I) moiety. The solution chemistry of complexes 1-4 indicated their stability in both dimethyl sulfoxide (DMSO) and a mixture of EtOH:H2O (1:1). In vitro cytotoxicity of the complexes was evaluated relative to cisplatin using an MTT assay against three different cancer cell lines: HCT116 (human colon cancer), MDA-MB-231 (human breast cancer), and B16 (murine skin cancer). Complexes 2, 3, and 4 exhibited significant cytotoxic effects against all tested cancer cell lines and showed significantly higher activity than cisplatin. To elucidate the mechanism underlying the cytotoxic effects of the phosphanegold(I) TBO complexes, various assays were employed, including mitochondrial membrane potential, ROS production, and gene expression analyses. The data obtained suggest that complex 2 exerts potent anticancer activity against breast cancer cells (MDA-MB-231) through the induction of oxidative stress, mitochondrial dysfunction, and apoptosis. Gene expression analyses showed an increase in the activity of the proapoptotic gene caspase-3 and a reduction in the activity of the antiapoptotic gene BCL-xL, which supported the findings that apoptosis had occurred.

3.
Metallomics ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-35869976

ABSTRACT

Three platinum(II) complexes of dicyclopentadiene (DCP) and dithiocarbamates (DTCs), namely, [Pt(η4-DCP)(Me2DTC)]PF6 (1), [Pt(η4-DCP)(Et2DTC)]PF6 (2), and [Pt(η4-DCP)(Bz2DTC)]PF6 (3) [Me2DTC = dimethyldithiocarbamate, Et2DTC = diethyldithiocarbamate, and Bz2DTC = dibenzyldithiocarbamate] were prepared and characterized by elemental analysis, IR, 1H, and 13C Nuclear Magnetic Resonance spectroscopy. The spectroscopic data indicated the coordination of both DCP and DTC ligands to platinum(II). The solution chemistry of complex 1 revealed that the complexes are stable in both dimethyl sulfoxide (DMSO) and 1:1 mixture of DMSO:H2O. In vitro cytotoxicity of the complexes relative to cisplatin was tested using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, against CHL-1 (human melanoma cancer cells), MDA-MB-231 (breast cancer cells), A549 (lung cancer cells), and B16 (murine melanoma cancer cells). The antiproliferative effect of all three prepared complexes was found to be significantly higher than cisplatin. Furthermore, flow cytometric analysis of complex 1 showed that the complex induced apoptosis, oxidative stress, mitochondrial potential depolarization and cell cycle arrest in a concentration-dependent pattern in the CHL-1 cells. Confirmation of apoptosis via gene expression analysis demonstrated down-regulation of anti-apoptotic genes and up-regulation of pro-apoptotic genes in the CHL-1 cells. Wound-healing assays also lent support to the strong cytotoxicity of the complexes. In vivo studies showed a significant reduction of tumor volume at the end of the experiment. In addition, the drug did not change the weight of the mice. In conclusion, complex 1 inhibited cell proliferation in vitro and reduced tumor growth in vivo.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Melanoma , Animals , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Coordination Complexes/chemistry , Dimethyl Sulfoxide/pharmacology , Drug Screening Assays, Antitumor , Humans , Indenes , Mice , Platinum/chemistry
4.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209921

ABSTRACT

Three novel gold(III) complexes (1-3) of general composition [Au(Bipydc)(S2CNR2)]Cl2 (Bipydc = 2,2'-bipyridine-3,3'-dicarboxylic acid and R = methyl for dimethyldithiocarbamate (DMDTC), ethyl for diethyldithiocarbamate (DEDTC), and benzyl for dibenzyldithiocarbamate (DBDTC)) have been synthesized and characterized by elemental analysis, FTIR and NMR spectroscopic techniques. The spectral results confirmed the presence of both the Bipydc and dithiocarbamate ligands in the complexes. The in vitro cytotoxic studies demonstrated that compounds 1-3 were highly cytotoxic to A549, HeLa, MDA-231, and MCF-7 cancer cells with activities much higher (about 25-fold) than cisplatin. In order to know the possible mode of cell death complex 2, [Au(Bipydc)(DEDTC)]Cl2 was further tested for induction of apoptosis towards the MCF-7 cells. The results indicated that complex 2 induces cell death through apoptosis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Gold/chemistry , Pyridines/chemistry , Thiocarbamates/chemistry , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , HeLa Cells , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL