Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Egypt Natl Canc Inst ; 33(1): 34, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34778919

ABSTRACT

BACKGROUND: Tumor eradication is one of the most important challengeable categories in oncological studies. In this account, besides the molecular genetics methods including cell therapy, gene therapy, immunotherapy, and general cancer therapy procedures like surgery, radiotherapy, and chemotherapy, photodynamic adjuvant therapy is of great importance. Photodynamic therapy (PDT) as a relatively noninvasive therapeutic method utilizes the irradiation of an appropriate wavelength which is absorbed by a photosensitizing agent in the presence of oxygen. In this procedure, a series of events lead to the direct death of malignant cells such as damage to the microvasculature and also the induction of a local inflammatory function. PDT has participated with other treatment modalities especially in the early stage of malignant tumors and has resulted in decreasing morbidity besides improving survival rate and quality of life. High spatial resolution of PDT has attracted considerable attention in the field of image-guided photodynamic therapy combined with chemotherapy of multidrug resistance cancers. Although PDT outcomes vary across the different tumor types, minimal natural tissue toxicity, minor systemic effects, significant reduction in long-term disease, lack of innate or acquired resistance mechanisms, and excellent cosmetic effects, as well as limb function, make it a valuable treatment option for combination therapies. SHORT CONCLUSION: In this review article, we tried to discuss the potential of PDT in the treatment of some dermatologic and solid tumors, particularly all its important mechanisms.


Subject(s)
Neoplasms , Photochemotherapy , Combined Modality Therapy , Humans , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Quality of Life
2.
Photodiagnosis Photodyn Ther ; 32: 101929, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32795508

ABSTRACT

BACKGROUND: Near-infrared triggered photodynamic therapy (NIR-PDT) has been introduced as a relatively deep tumor treatment modality. The gold Nanoechinus (Au NE) is a rare type of nanostructures that act as a transducer to change NIR wavelength to ultraviolet (UV) and visible lights. During the photodynamic process, Au nanoechinus (Au NE) converts the irradiation of 980 nm to 674 nm which is absorbed by Zn(II) Phthalocyanine tetrasulfonic acid (ZnPcS). In this study the cooperation effect of Au NE and ZnPcS in PDT on MCF7 and Hela cells was investigated. METHODS: Cytotoxicity and phototoxicity of the composition having different concentrations of Au NE and ZnPcS upon irradiation of 980 nm NIR light were evaluated against MCF7 and Hela cells after two different incubation times and irradiating with two different power densities of laser. RESULTS: Among different experimental groups, in MCF7 cells, which were incubated for 48 h with 50 µg/mL Au NE+2µM ZnPcS and were treated by 980 nm laser with a power density of 200 mW cm-2 for 15 and 30 min, 48 and 38% cell viability were recorded. No appreciable result was observed due to PDT of Hela cells. CONCLUSIONS: Comparing to other PDT modalities against MCF7 cells, NIR-PDT procedure suggested in this study with the synergistic effect of Au NE and ZnPcS could be a secure promising modality in the treatment of deep-seated tumors. Carefully increasing the power density and ambient temperature, to the extent of skin tolerance threshold value, seems to be efficient in the treatment of Hela cells.


Subject(s)
Photochemotherapy , Cell Survival , Gold/pharmacology , HeLa Cells , Humans , Indoles , Isoindoles , Organometallic Compounds , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Zinc Compounds
3.
Int J Prev Med ; 8: 35, 2017.
Article in English | MEDLINE | ID: mdl-28584617

ABSTRACT

Recently, interest in targeted cancer therapies via metabolic pathways has been renewed with the discovery that many tumors become dependent on glucose uptake during anaerobic glycolysis. Also the inability of ketone bodies metabolization due to various deficiencies in mitochondrial enzymes is the major metabolic changes discovered in malignant cells. Therefore, administration of a ketogenic diet (KD) which is based on high in fat and low in carbohydrates might inhibit tumor growth and provide a rationale for therapeutic strategies. So, we conducted this systematic review to assess the effects of KD on the tumor cells growth and survival time in animal studies. All databases were searched from inception to November 2015. We systematically searched the PubMed, Scopus, Google Scholars, Science Direct and Cochrane Library according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. To assess the quality of included studies we used SYRCLE's RoB tool. 268 articles were obtained from databases by primary search. Only 13 studies were eligible according to inclusion criteria. From included studies, 9 articles indicate that KD had a beneficial effect on tumor growth and survival time. Tumor types were included pancreatic, prostate, gastric, colon, brain, neuroblastoma and lung cancers. In conclusions, although studies in this field are rare and inconsistence, recent findings have demonstrated that KD can potentially inhibit the malignant cell growth and increase the survival time. Because of differences physiology between animals and humans, future studies in cancer patients treated with a KD are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...