Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1303198, 2023.
Article in English | MEDLINE | ID: mdl-38186646

ABSTRACT

Background: Aframomum sp. is a genus of plants in the Zingiberaceae family. It includes several species, some of which are used in cosmetics for their various properties, making them useful in skincare products, particularly for anti-aging, moisturizing, and brightening the skin. However, to date, there is no experimental evidence on its natural extracts obtained or modified using microorganisms (bio-fermentation) as an anti-aging agent. Objective: The present study aimed to evaluate the antiaging effect of a Bio-fermented Aframomum angustifolium (BAA) extract on 3D bioprinted skin equivalent. Methods: The consortium of microorganisms contained Komagataeibacter, Gluconobacter, Acetobacter, Saccharomyces, Torulaspora, Brettanomyces, Hanseniaspora, Leuconostoc, Lactobacillus, Schizosaccharomyces. It was developed on a media containing water, sugar, and infused black tea leaves. The seeds of Aframomum angustifolium previously grounded were mixed with the culture medium, and the ferments in growth; this fermentation step lasted 10 days. Then, the medium was collected and filtered (0.22 µm) to obtain the BAA extract. To enhance our comprehension of the impact of BAA extract on skin aging, we developed skin equivalents using bio-printing methods with the presence or absence of keratinocyte stem cells (KSC). These skin equivalents were derived from keratinocytes obtained from both a middle-aged donor, with and without KSC. Moreover, we examined the effects of treating the KSC-depleted skin equivalents with Bio-fermented Aframomum angustifolium (BAA) extract for 5 days. Skin equivalents containing KSC-depleted keratinocytes exhibited histological characteristics typical of aged skin and were compared to skin equivalents derived from young donors. Results: The BAA extract contained specific organic acids such as lactic, gluconic, succinic acid and polyphenols. KSC-depleted skin equivalents that were treated with BAA extract exhibited higher specular reflection, indicating better hydration of the stratum corneum, higher mitotic activity in the epidermis basal layer, improved dermal-epidermal connectivity, and increased rigidity of the dermal-epidermal junction compared to non-treated KSC-depleted equivalents. BAA extract treatments also resulted in changes at the dermis level, with an increase in total collagen and a decrease in global laxity, suggesting that this extract could help maintain youthful-looking skin. Conclusion: In summary, our findings indicated that BAA extract treatments have pleiotropic beneficial effects on skin equivalents and that the bio-fermentation provides new biological activities to this plant.

2.
Biochim Biophys Acta ; 1860(6): 1071-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26922828

ABSTRACT

BACKGROUND: Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-ß. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. METHODS: We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). RESULTS: TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. CONCLUSION: TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. GENERAL SIGNIFICANCE: This study enlightens the role of TIEG-1 role in skin biology.


Subject(s)
Actin Cytoskeleton/chemistry , Early Growth Response Transcription Factors/physiology , Fibroblasts/metabolism , Kruppel-Like Transcription Factors/physiology , Oxidative Stress , Actin Depolymerizing Factors/metabolism , Cell Movement , Cells, Cultured , Humans , Phosphorylation , Skin/cytology , Wound Healing , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...