Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 22(3): 701-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25931086

ABSTRACT

PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

2.
J Synchrotron Radiat ; 20(Pt 2): 347-54, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23412493

ABSTRACT

The performance of a single-photon-counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead-time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel(-1); the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel(-1); these are further correctable with a transfer function to ∼1.77 MHz pixel(-1). This new approach has wide application both in high-accuracy fundamental experiments and in standard crystallographic X-ray fluorescence and other X-ray measurements. The explicit use of data variance (rather than N(1/2) noise) and direct measures of goodness-of-fit (χ(r)(2)) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non-physical values can lead to remarkable agreement for a range of count-rate, pulse-frequency and temporal structure. However, especially when the dead-time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident.

3.
J Synchrotron Radiat ; 19(Pt 3): 347-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22514168

ABSTRACT

The PILATUS detector system is widely used for X-ray experiments at third-generation synchrotrons. It is based on a hybrid technology combining a pixelated silicon sensor with a CMOS readout chip. Its single-photon-counting capability ensures precise and noise-free measurements. The counting mechanism introduces a short dead-time after each hit, which becomes significant for rates above 10(6) photons s(-1) pixel(-1). The resulting loss in the number of counted photons is corrected for by applying corresponding rate correction factors. This article presents the results of a Monte Carlo simulation which computes the correction factors taking into account the detector settings as well as the time structure of the X-ray beam at the synchrotron. The results of the simulation show good agreement with experimentally determined correction factors for various detector settings at different synchrotrons. The application of accurate rate correction factors improves the X-ray data quality acquired at high photon fluxes. Furthermore, it is shown that the use of fast detector settings in combination with an optimized time structure of the X-ray beam allows for measurements up to rates of 10(7) photons s(-1) pixel(-1).

4.
J Synchrotron Radiat ; 16(Pt 4): 489-93, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19535862

ABSTRACT

A synchrotron beam has been used to investigate the radiation tolerance of a PILATUS II module. It has been demonstrated that radiation-induced threshold shifts become significant above 30 Mrad. Individual adjustment of pixel thresholds after irradiation enabled retention of standard behaviour in excess of 40 Mrad. This implies that a module can be continuously irradiated for in excess of 40 days at an individual pixel count rate of 10(6) counts s(-1).

SELECTION OF CITATIONS
SEARCH DETAIL