Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Acta Biochim Pol ; 68(4): 565-574, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34536268

ABSTRACT

Rapid development of antibiotic resistance of bacteria and fungi, as well as cancer drug resistance, has become a global medical problem. Therefore, alternative methods of treatment are considered. Studies of recent years have focused on finding new biologically active compounds that may be effective against drug-resistant cells. High biodiversity of hard-to-reach environments offers sources to search for novel molecules potentially applicable for medical purposes. In this review article, we summarize and discuss compounds produced by microorganisms from hot springs, glaciers, caves, underground lakes, marine ecosystems, and hydrothermal vents. Antibacterial, antiviral, antifungal, anticancer, anti-inflammatory, and antioxidant potential of these molecules are presented and discussed. We conclude that using compounds derived from microorganisms occurring in extreme environments might be considered in further studies on development of treatment procedures for diseases caused by drug-resistant cells.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Extremophiles/metabolism , Microbiota , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Biodiversity , Biological Products/isolation & purification
2.
Postepy Biochem ; 67(2): 117-129, 2021 06 30.
Article in Polish | MEDLINE | ID: mdl-34378891

ABSTRACT

Development of therapies for neurodegenerative diseases, disorders characterized by progressing loss of neurons, is a great challenge for current medicine. Searching for drugs for these diseases is being proceeded in many laboratories in the world. To date, several therapeutical strategies have been proposed which, however, are either of insufficient efficacy or at the early preclinical stages. One of the newest concepts is elevated efficiency of degradation of protein aggregates which are causes of 70% of these diseases. Autophagy, i.e. lysosomal degradation of macromolecules, is a process which could be employed in such a strategy Searching for a compound which would not only stimulate autophagy but also reveal safety in a long-term usage and be able to cross the blood-brain-barrier led to studies on one of flavonoids, genistein which occurs at high concentrations in soy. Experiments with this compound indicated its enormous efficiency in removing protein aggregated formed by beta-amyloid, hyperphosphorylated tau protein, and mutant huntingtin. Moreover, using animal models of these diseases, correction of cognitive and motoric symptoms was demonstrated. Considering safety of genistein as well as its ability to crossing the blood-brain-barrier, one may assume that this molecule is a candidate for an effective drug in therapies of not only Alzheimer disease and Huntington disease, but also other disorders caused be protein aggregates. In this article, recent results of studies on the use of genistein in different models of neurodegenerative diseases are summarized, with special emphasis on its autophagy-dependent action.


Subject(s)
Alzheimer Disease , Huntington Disease , Neurodegenerative Diseases , Alzheimer Disease/drug therapy , Animals , Autophagy , Genistein/pharmacology , Genistein/therapeutic use , Neurodegenerative Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...