Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 25(4): e202400074, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38293899

ABSTRACT

The synthesis of diarylamine-based organoselenium compounds via the nucleophilic substitution reactions has been described. Symmetrical monoselenides and diselenides were conveniently synthesized by the reduction of their corresponding selenocyanates using sodium borohydride. Selenocyanates were obtained from 2-chloro acetamides by the nucleophilic displacement with potassium selenocyanate. Selenides were synthesized by treating the 2-chloro acetamides with in situ generated sodium butyl selenolate as nucleophile. Further, the newly synthesized organoselenium compounds were evaluated for their glutathione peroxidase (GPx)-like activity in thiophenol assay. This study revealed that the methoxy-substituted organoselenium compounds showed significant effect on the GPx-like activity. The catalytic parameters for the most efficient catalysts were also determined. The anti-ferroptotic activity for all GPx-mimics evaluated in a 4-OH-tamoxifen (TAM) inducible GPx4 knockout cell line using liproxstatin as standard.


Subject(s)
Ferroptosis , Organoselenium Compounds , Glutathione Peroxidase/metabolism , Amines , Organoselenium Compounds/pharmacology , Antioxidants/metabolism , Acetamides
2.
J Org Chem ; 88(6): 3509-3522, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36847416

ABSTRACT

Bis(3-amino-1-hydroxybenzyl)diselenide containing two ortho groups was synthesized from 7-nitro-3H-2,1-benzoxaselenole and in situ generated sodium benzene tellurolate (PhTeNa). One-pot synthesis of 1,3-benzoselenazoles was achieved from bis(3-amino-1-hydroxybenzyl)diselenide and aryl aldehydes using acetic acid as a catalyst. The X-ray crystal structure of chloro-substituted benzoselenazole revealed a planar structure with T-shaped geometry around the Se atom. Both natural bond orbital and atoms in molecules calculations confirmed the presence of secondary Se···H interactions in bis(3-amino-1-hydroxybenzyl)diselenide and Se···O interactions in benzoselenazoles, respectively. The glutathione peroxidase (GPx)-like antioxidant activities of all compounds were evaluated using a thiophenol assay. Bis(3-amino-1-hydroxybenzyl)diselenide and benzoselenazoles showed better GPx-like activity compared to that of the diphenyl diselenide and ebselen, used as references, respectively. Based on 77Se{1H} NMR spectroscopy, a catalytic cycle for bis(3-amino-1-hydroxybenzyl)diselenide using thiophenol and hydrogen peroxide was proposed involving selenol, selenosulfide, and selenenic acid as intermediates. The potency of all GPx mimics was confirmed by their in vitro antibacterial properties against the biofilm formation of Bacillus subtilis and Pseudomonas aeruginosa. Additionally, molecular docking studies were used to evaluate the in silico interactions between the active sites of the TsaA and LasR-based proteins found in Bacillus subtilis and Pseudomonas aeruginosa.


Subject(s)
Antioxidants , Organoselenium Compounds , Molecular Docking Simulation , Phenols , Sulfhydryl Compounds , Organoselenium Compounds/chemistry , Glutathione Peroxidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...