Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38592775

ABSTRACT

A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.

2.
BMC Plant Biol ; 24(1): 206, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509484

ABSTRACT

BACKGROUND: Plants mediate several defense mechanisms to withstand abiotic stresses. Several gene families respond to stress as well as multiple transcription factors to minimize abiotic stresses without minimizing their effects on performance potential. RNA helicase (RH) is one of the foremost critical gene families that can play an influential role in tolerating abiotic stresses in plants. However, little knowledge is present about this protein family in rapeseed (canola). Here, we performed a comprehensive survey analysis of the RH protein family in rapeseed (Brassica napus L.). RESULTS: A total of 133 BnRHs genes have been discovered in this study. By phylogenetic analysis, RHs genes were divided into one main group and a subgroup. Examination of the chromosomal position of the identified genes showed that most of the genes (27%) were located on chromosome 3. All 133 identified sequences contained the main DEXDC domain, the HELICC domain, and a number of sub-domains. The results of biological process studies showed that about 17% of the proteins acted as RHs, 22% as ATP binding, and 14% as mRNA binding. Each part of the conserved motifs, communication network, and three-dimensional structure of the proteins were examined separately. The results showed that the RWC in leaf tissue decreased with higher levels of drought stress and in both root and leaf tissues sodium concentration was increased upon increased levels of salt stress treatments. The proline content were found to be increased in leaf and root with the increased level of stress treatment. Finally, the expression patterns of eight selected RHs genes that have been exposed to drought, salinity, cold, heat and cadmium stresses were investigated by qPCR. The results showed the effect of genes under stress. Examination of gene expression in the Hayola #4815 cultivar showed that all primers except primer #79 had less expression in both leaves and roots than the control level. CONCLUSIONS: New finding from the study have been presented new insights for better understanding the function and possible mechanism of RH in response to abiotic stress in rapeseed.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/metabolism , Phylogeny , Brassica rapa/genetics , Stress, Physiological/genetics , RNA/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Front Plant Sci ; 15: 1378485, 2024.
Article in English | MEDLINE | ID: mdl-38510446
5.
J Plant Physiol ; 289: 154096, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37776751

ABSTRACT

This study presents an exploration of the efficacy of brassinosteroids (BRs) and ethylene in mediating heat stress tolerance in rice (Oryza sativa). Heat is one of the major abiotic factors that prominently deteriorates rice production by influencing photosynthetic efficiency, source‒sink capacity, and growth traits. The application of BR (0.5 mM) and ethylene (200 µl l-1) either individually and/or in combination was found to alleviate heat stress-induced toxicity by significantly improving photosynthesis, source‒sink capacity and defense systems; additionally, it reduced the levels of oxidative stress markers and ethylene formation. The study revealed the positive influence of BR in promoting plant growth responses under heat stress through its interplay with ethylene biosynthesis and enhanced plant defense systems. Interestingly, treatment with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) substantiated that BR application to heat-stressed rice plants enhanced ethylene-dependent pathways to counteract the underlying adversities. Thus, BR action was found to be mediated by ethylene to promote heat tolerance in rice. The present study sheds light on the potential tolerance mechanisms which can ensure rice sustainability under heat stress conditions.

6.
Plants (Basel) ; 12(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631196

ABSTRACT

In recent years, application of bio-fertilizers (BFs) in intercropping systems has become known as one of the main sustainable and eco-friendly strategies for improving the quantity and quality of forage crops. In order to evaluate the forage quantity and quality of sorghum intercropped with soybean, a two-year field experiment was carried out as factorial based on a randomized complete blocks design (RCBD) with three replications. The first factor was different cropping patterns including soybean monocultures with densities of 40 and 50 plants m-2 (G40 and G50), sorghum monocultures with densities of 10 and 15 plants m-2 (S10 and S15) and intercropping of two plants with the mentioned densities. The second factor was non-application (control) and application of bio-fertilizers. The results demonstrated that the highest dry forage yield of sorghum (21.22 t ha-1) was obtained in monoculture conditions with density of 15 plants m-2 and inoculation with bio-fertilizer (S15+BF). The maximum crude protein (CP = 149.6 g kg-1 DM), ash (113.2 g kg-1 DM), water soluble carbohydrates (WSC = 251.16 g kg-1 DM), dry matter intake (DMI = 26.83 g kg-1 of body weight), digestible dry matter (DDM = 668.01 g kg-1 DM), total digestible nutrients (TDN = 680.42 g kg-1 DM), relative feed value (RFV = 142.98%) and net energy for lactation (NEL = 1.625 Mcal kg-1) were observed in the intercropping of S10G50 inoculated with BF. Interestingly, application of bio-fertilizers enhanced the content of CP, ash, WSC, DMI, DDM, TDN, RFV and NEL by 7.5, 8, 11.7, 3.6, 2.3, 12.3, 5.9 and 3.5% when compared with the control (non-application of bio-fertilizers). In all intercropping patterns, the total land equivalent ratio (LER) value was greater than one, representing the advantage of these cropping patterns in comparison with sorghum monoculture. The highest total LER was recorded in the intercropping of S15G40 and S10G50 following application of BF. Additionally, the highest monetary advantage index (MAI) was calculated in the intercropping of S15G40+BF. Generally, it can be concluded that the intercropping of S10G50 along with bio-fertilizer inoculation could be suggested as an eco-friendly strategy for improving the forage quantity and quality under low-input conditions.

7.
Plants (Basel) ; 12(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986903

ABSTRACT

Earthworms and soil microorganisms contribute to soil health, quality, and fertility, but their importance in agricultural soils is often underestimated. This study aims at examining whether and to what extent the presence of earthworms (Eisenia sp.) affected the (a) soil bacterial community composition, (b) litter decomposition, and (c) plant growth (Brassica oleracea L., broccoli; Vicia faba L., faba bean). We performed a mesocosm experiment in which plants were grown outdoors for four months with or without earthworms. Soil bacterial community structure was evaluated by a 16S rRNA-based metabarcoding approach. Litter decomposition rates were determined by using the tea bag index (TBI) and litter bags (olive residues). Earthworm numbers almost doubled throughout the experimental period. Independently of the plant species, earthworm presence had a significant impact on the structure of soil bacterial community, in terms of enhanced α- and ß-diversity (especially that of Proteobacteria, Bacteroidota, Myxococcota, and Verrucomicrobia) and increased 16S rRNA gene abundance (+89% in broccoli and +223% in faba bean). Microbial decomposition (TBI) was enhanced in the treatments with earthworms, and showed a significantly higher decomposition rate constant (kTBI) and a lower stabilization factor (STBI), whereas decomposition in the litter bags (dlitter) increased by about 6% in broccoli and 5% in faba bean. Earthworms significantly enhanced root growth (in terms of total length and fresh weight) of both plant species. Our results show the strong influence of earthworms and crop identity in shaping soil chemico-physical properties, soil bacterial community, litter decomposition and plant growth. These findings could be used for developing nature-based solutions that ensure the long-term biological sustainability of soil agro- and natural ecosystems.

8.
Plants (Basel) ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432860

ABSTRACT

Phytohormones have a role in stress adaptation. The major mechanism underlying the role of exogenously-sourced nitric oxide (NO; as sodium nitroprusside, SNP: 50.0 µM) and salicylic acid (SA; 0.5 mM) in the presence of 2.0 mM SO4-2 was assessed in heat stress (HS; 40 °C for 6 h daily for 15 days) tolerance in wheat (Triticum aestivum L. cv. HD-3226). The cultivar HD-3226 possessed high photosynthetic sulfur use efficiency (p-SUE) among the six cultivars screened. Plants grown under HS exhibited an increased content of reactive oxygen species (ROS; including superoxide radical and hydrogen peroxide) and extent of lipid peroxidation with a consequent reduction in photosynthesis and growth. However, both NO and SA were found to be protective against HS via enhanced S assimilation. Their application reduced oxidative stress and increased the activity of antioxidant enzymes. NO or SA supplementation along with S under HS recovered the losses and improved photosynthesis and growth. The use of SA inhibitor (2-aminoindane-2-phosphonic acid; AIP) and NO scavenger (cPTIO) confirmed that the mitigating effects of SA and NO involved induction in S assimilation.

9.
Plants (Basel) ; 11(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36079592

ABSTRACT

Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants' ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.

10.
Antioxidants (Basel) ; 11(2)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35204254

ABSTRACT

Nitric oxide (NO) and abscisic acid (ABA) play a significant role to combat abiotic stress. Application of 100 µM sodium nitroprusside (SNP, NO donor) or ABA alleviated heat stress effects on photosynthesis and growth of wheat (Triticum aestivum L.) plants exposed to 40 °C for 6 h every day for 15 days. We have shown that ABA and NO synergistically interact to reduce the heat stress effects on photosynthesis and growth via reducing the content of H2O2 and thiobarbituric acid reactive substances (TBARS), as well as maximizing osmolytes production and the activity and expression of antioxidant enzymes. The inhibition of NO and ABA using c-PTIO (2-4 carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and fluridone (Flu), respectively, reduced the osmolyte and antioxidant metabolism and heat stress tolerance. The inhibition of NO significantly reduced the ABA-induced osmolytes and antioxidant metabolism, exhibiting that the function of ABA in the alleviation of heat stress was NO dependent and can be enhanced with NO supplementation.Thus, regulating the activity and expression of antioxidant enzymes together with osmolytes production could act as a possible strategy for heat tolerance.

11.
Plant Physiol Biochem ; 173: 68-75, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35101796

ABSTRACT

Contamination of soil by heavy metals severely affects plant growth and causes soil pollution. While effects on plant growth have been investigated for metals taken individually or in groups, less is known about their comparative effects. In this study Arabidopsis thaliana seedlings were grown for 14 days in Petri dishes containing medium contaminated by six common heavy metals (Hg, Cd, Pb, Cu, Ni and Zn), at the minimum concentrations defined as toxic by the most recent EU legislation on contamination of agricultural soils. (a) Root structure and morphology, (b) metal composition and translocation, and (c) the levels of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were analyzed. Metals accumulated more in roots than in shoots, with concentrations that differed by several orders of magnitude depending on the metal: Cd (ca. 700 × and ca. 450 × in roots and shoots, respectively), Hg (150 × , 80 × ), Ni (50 × , 20 × ), Cu (48 × , 20 × ), Zn (23 × , 6 × ), and Pb (9 × , 4 × ). Responses were significant for at least nine of the ten root parameters (with the exception of Hg), and five of the six shoot parameters (with the exception of Zn). Cu and Zn induced respectively the strongest responses in root hormonal (up to ca. 240% the control values for IBA, 190% for IAA) and structural parameters (up to 210% for main root length, 330% for total lateral root length, 220% for number of root tips, 600% for total root surface, and from 2.5° to 26.0° of root growth angle). Regarding the shoots, the largest changes occurred for shoot height (down to 60% for Ni), rosette diameter (down to 45% for Hg), leaf number (up to 230% for Zn) and IBA (up to 240% for Pb and Cu). A microscope analysis revealed that shape and conformation of root hairs were strongly inhibited after Cd exposure, and enhanced under Hg and Pb. The results could have positive applications such as for defining toxicity thresholds (in phytoremediation) and acceptable concentration levels (for policies) for some of the most common heavy metals in agricultural soils.


Subject(s)
Arabidopsis , Metals, Heavy , Soil Pollutants , Indoleacetic Acids , Metals, Heavy/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
12.
Plant Physiol Biochem ; 175: 33-43, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35176579

ABSTRACT

In C3 plants, carbon isotope composition (δ13C) is influenced by isotopic effects during diffusion from the atmosphere to the chloroplasts and carboxylation reactions. This work aimed to demonstrate if δ13C of leaf soluble carbohydrates (δ13Cleaves) and of dry matter from new-growth shoots (δ13Cshoots) of Prunus plants subjected to a period of water deficit was related to water use efficiency (WUE). For this purpose, three interspecific Prunus hybrids rootstocks (6-5, 7-7 and G × N) were gradually subjected to drought and then rewatered. Soil water content (SWC) decreased from 26.1 to 9.4% after 70 days of water shortage, when plants reached values of predawn leaf water potential (LWP) ranging from -3.12 to -4.00 MPa. Gas exchange, particularly net photosynthetic and transpiration rates, differed among the three hybrids, leading to different values of WUE. After 70 days of drought, a significant δ13C increase of 5.86, 4.28 and 4.99‰ was observed in 6-5, 7-7 and G × N, respectively. Significant correlations between δ13C and other parameters (substomatal CO2/atmospheric CO2 ratio, stomatal conductance and stem water potential) were found in all hybrids. The rewatering phase caused a recovery of the physiological status of the plants. The isotope composition of δ13Cshoots was correlated with the average WUE measured during the whole experiment. δ13Cleaves and δ13Cshoots were positively related (r = 0.87; p < 0.001). The isotopic signature was a reliable screening tool to identify Prunus genotypes tolerant to drought stress. The results suggest the possibility of using δ13C as an integrated indicator of level of drought stress in plants subjected to prolonged stress conditions.

14.
Plants (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34579310

ABSTRACT

Photosynthesis is a pivotal process that determines the synthesis of carbohydrates required for sustaining growth under normal or stress situation. Stress exposure reduces the photosynthetic potential owing to the excess synthesis of reactive oxygen species that disturb the proper functioning of photosynthetic apparatus. This decreased photosynthesis is associated with disturbances in carbohydrate metabolism resulting in reduced growth under stress. We evaluated the importance of melatonin in reducing heat stress-induced severity in wheat (Triticum aestivum L.) plants. The plants were subjected to 25 °C (optimum temperature) or 40 °C (heat stress) for 15 days at 6 h time duration and then developed the plants for 30 days. Heat stress led to oxidative stress with increased production of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content and reduced accrual of total soluble sugars, starch and carbohydrate metabolism enzymes which were reflected in reduced photosynthesis. Application of melatonin not only reduced oxidative stress through lowering TBARS and H2O2 content, augmenting the activity of antioxidative enzymes but also increased the photosynthesis in plant and carbohydrate metabolism that was needed to provide energy and carbon skeleton to the developing plant under stress. However, the increase in these parameters with melatonin was mediated via hydrogen sulfide (H2S), as the inhibition of H2S by hypotaurine (HT; H2S scavenger) reversed the ameliorative effect of melatonin. This suggests a crosstalk of melatonin and H2S in protecting heat stress-induced photosynthetic inhibition via regulation of carbohydrate metabolism.

15.
Antioxidants (Basel) ; 10(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34573126

ABSTRACT

Peroxisomes are important in plant physiological functions and stress responses. Through the production of reactive oxygen and nitrogen species (ROS and RNS), and antioxidant defense enzymes, peroxisomes control cellular redox homeostasis. Peroxin (PEX) proteins, such as PEX7 and PEX5, recognize peroxisome targeting signals (PTS1/PTS2) important for transporting proteins from cytosol to peroxisomal matrix. pex7-1 mutant displays reduced PTS2 protein import and altered peroxisomal metabolism. In this research we analyzed the role of PEX7 in the Arabidopsis thaliana root system exposed to 30 or 60 µM CdSO4. Cd uptake and translocation, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) levels, and reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels and catalase activity were analyzed in pex7-1 mutant primary and lateral roots in comparison with the wild type (wt). The peroxisomal defect due to PEX7 mutation did not reduce Cd-uptake but reduced its translocation to the shoot and the root cell peroxisomal signal detected by 8-(4-Nitrophenyl) Bodipy (N-BODIPY) probe. The trend of nitric oxide (NO) and peroxynitrite in pex7-1 roots, exposed/not exposed to Cd, was as in wt, with the higher Cd-concentration inducing higher levels of these RNS. By contrast, PEX7 mutation caused changes in Cd-induced hydrogen peroxide (H2O2) and superoxide anion (O2●-) levels in the roots, delaying ROS-scavenging. Results show that PEX7 is involved in counteracting Cd toxicity in Arabidopsis root system by controlling ROS metabolism and affecting auxin levels. These results add further information to the important role of peroxisomes in plant responses to Cd.

16.
Plants (Basel) ; 10(7)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199061

ABSTRACT

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg-1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 µL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.

17.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298924

ABSTRACT

Coumarin is a phytotoxic natural compound able to affect plant growth and development. Previous studies have demonstrated that this molecule at low concentrations (100 µM) can reduce primary root growth and stimulate lateral root formation, suggesting an auxin-like activity. In the present study, we evaluated coumarin's effects (used at lateral root-stimulating concentrations) on the root apical meristem and polar auxin transport to identify its potential mode of action through a confocal microscopy approach. To achieve this goal, we used several Arabidopsis thaliana GFP transgenic lines (for polar auxin transport evaluation), immunolabeling techniques (for imaging cortical microtubules), and GC-MS analysis (for auxin quantification). The results highlighted that coumarin induced cyclin B accumulation, which altered the microtubule cortical array organization and, consequently, the root apical meristem architecture. Such alterations reduced the basipetal transport of auxin to the apical root apical meristem, inducing its accumulation in the maturation zone and stimulating lateral root formation.


Subject(s)
Arabidopsis/drug effects , Biological Transport/drug effects , Coumarins/pharmacology , Indoleacetic Acids/metabolism , Meristem/drug effects , Microtubules/drug effects , Plant Roots/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Meristem/metabolism , Microtubules/metabolism , Plant Roots/metabolism
18.
Plants (Basel) ; 10(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802380

ABSTRACT

Salvia ceratophylloides (Ard.) is an endemic and rare plant species recently rediscovered as very few individuals at two different Southern Italy sites. The study of within-plant variation is fundamental to understand the plant adaptation to the local conditions, especially in rare species, and consequently to preserve plant biodiversity. Here, we reported the variation of the morpho-ecophysiological and metabolic traits between the sessile and petiolate leaf of S. ceratophylloides plants at two different sites for understanding the adaptation strategies for surviving in these habitats. The S. ceratophylloides individuals exhibited different net photosynthetic rate, maximum quantum yield, light intensity for the saturation of the photosynthetic machinery, stomatal conductance, transpiration rate, leaf area, fractal dimension, and some volatile organic compounds (VOCs) between the different leaf types. This within-plant morpho-physiological and metabolic variation was dependent on the site. These results provide empirical evidence of sharply within-plant variation of the morpho-physiological traits and VOCs profiles in S. ceratophylloides, explaining the adaptation to the local conditions.

20.
Plants (Basel) ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478097

ABSTRACT

This study explored the interactive effect of ethephon (2-chloroethyl phosphonic acid; an ethylene source) and sulfur (S) in regulating the antioxidant system and ABA content and in maintaining stomatal responses, chloroplast structure, and photosynthetic performance of mustard plants (Brassica juncea L. Czern.) grown under 100 mM NaCl stress. The treatment of ethephon (200 µL L-1) and S (200 mg S kg-1 soil) together markedly improved the activity of enzymatic and non-enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle, resulting in declined oxidative stress through lesser content of sodium (Na+) ion and hydrogen peroxide (H2O2) in salt-stressed plants. These changes promoted the development of chloroplast thylakoids and photosynthetic performance under salt stress. Ethephon + S also reduced abscisic acid (ABA) accumulation in guard cell, leading to maximal stomatal conductance under salt stress. The inhibition of ethylene action by norbornadiene (NBD) in salt- plus non-stressed treated plants increased ABA and H2O2 contents, and reduced stomatal opening, suggesting the involvement of ethephon and S in regulating stomatal conductance. These findings suggest that ethephon and S modulate antioxidant system and ABA accumulation in guard cells, controlling stomatal conductance, and the structure and efficiency of the photosynthetic apparatus in plants under salt stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...