Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Ultrasound ; 32(2): 121-133, 2024.
Article in English | MEDLINE | ID: mdl-38882616

ABSTRACT

Background: Tissue-mimicking phantoms (TMPs) have been used extensively in clinical and nonclinical settings to simulate the thermal effects of focus ultrasound (FUS) technology in real tissue or organs. With recent technological developments in the FUS technology and its monitoring/guided techniques such as ultrasound-guided FUS and magnetic resonance-guided FUS (MRgFUS) the need for TMPs are more important than ever to ensure the safety of the patients before being treated with FUS for a variety of diseases (e.g., cancer or neurological). The purpose of this study was to prepare a tumor-mimicking phantom (TUMP) model that can simulate competently a tumor that is surrounded by healthy tissue. Methods: The TUMP models were prepared using polyacrylamide (PAA) and agar solutions enriched with MR contrast agents (silicon dioxide and glycerol), and the thermosensitive component bovine serum albumin (BSA) that can alter its physical properties once thermal change is detected, therefore offering real-time visualization of the applied FUS ablation in the TUMPs models. To establish if these TUMPs are good candidates to be used in thermoablation, their thermal properties were characterized with a custom-made FUS system in the laboratory and a magnetic resonance imaging (MRI) setup with MR-thermometry. The BSA protein's coagulation temperature was adjusted at 55°C by setting the pH of the PAA solution to 4.5, therefore simulating the necrosis temperature of the tissue. Results: The experiments carried out showed that the TUMP models prepared by PAA can change color from transparent to cream-white due to the BSA protein coagulation caused by the thermal stress applied. The TUMP models offered a good MRI contrast between the TMPs and the TUMPs including real-time visualization of the ablation area due to the BSA protein coagulation. Furthermore, the T2-weighted MR images obtained showed a significant change in T2 when the BSA protein is thermally coagulated. MR thermometry maps demonstrated that the suggested TUMP models may successfully imitate a tumor that is present in soft tissue. Conclusion: The TUMP models developed in this study have numerous uses in the testing and calibration of FUS equipment including the simulation and validation of thermal therapy treatment plans with FUS or MRgFUS in oncology applications.

2.
J Tissue Eng Regen Med ; 12(1): e495-e512, 2018 01.
Article in English | MEDLINE | ID: mdl-27689781

ABSTRACT

Cardiac tissue engineering (CTE) is currently a prime focus of research because of an enormous clinical need. In the present work, a novel functional material, poly(3-hydroxyoctanoate), P(3HO), a medium chain-length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of neat P(3HO) patches, assessed using neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated into the patches. In addition, no deleterious effect was observed on adult cardiomyocyte contraction when cardiomyocytes were seeded on the P(3HO) patches. Hence, P(3HO)-based multifunctional cardiac patches are promising constructs for efficient CTE. This work will have a positive impact on the development of P(3HO) and other PHAs as a novel new family of biodegradable functional materials with huge potential in a range of different biomedical applications, particularly CTE, leading to further interest and exploitation of these materials. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Caprylates/pharmacology , Heart/physiology , Materials Testing , Tissue Engineering/methods , Animals , Cell Line , Cell Proliferation/drug effects , Heart/drug effects , Mice , Myocardial Contraction/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Rats , Temperature , Vascular Endothelial Growth Factor A/metabolism
3.
Acta Biomater ; 64: 301-312, 2017 12.
Article in English | MEDLINE | ID: mdl-28986301

ABSTRACT

The spread of antibiotic-resistant pathogens requires new treatments. Small molecule precursor compounds that produce oxidative biocides with well-established antimicrobial properties could provide a range of new therapeutic products to combat resistant infections. The aim of this study was to investigate a novel biomaterials-based approach for the manufacture, targeted delivery and controlled release of a peroxygen donor (sodium percarbonate) combined with an acetyl donor (tetraacetylethylenediamine) to deliver local antimicrobial activity via a dynamic equilibrium mixture of hydrogen peroxide and peracetic acid. Entrapment of the pre-cursor compounds into hierarchically structured degradable microparticles was achieved using an innovative dry manufacturing process involving thermally induced phase separation (TIPS) that circumvented compound decomposition associated with conventional microparticle manufacture. The microparticles provided controlled release of hydrogen peroxide and peracetic acid that led to rapid and sustained killing of multiple drug-resistant organisms (methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli) without associated cytotoxicity in vitro nor intracutaneous reactivity in vivo. The results from this study demonstrate for the first time that microparticles loaded with acetyl and peroxygen donors retain their antimicrobial activity whilst eliciting no host toxicity. In doing so, it overcomes the detrimental effects that have prevented oxidative biocides from being used as alternatives to conventional antibiotics. STATEMENT OF SIGNIFICANCE: The manuscript explores a novel approach to utilize the antimicrobial activity of oxidative species for sustained killing of multiple drug-resistant organisms without causing collateral tissue damage. The results demonstrate, for the first time, the ability to load pre-cursor compounds into porous polymeric structures that results in their release and conversion into oxidative species in a controlled manner. Until now, the use of oxidative species has not been considered as a candidate therapeutic replacement for conventional antibiotics due to difficulties associated with handling during manufacture and controlling sustained release without causing undesirable tissue damage. The ultimate impact of the research could be the creation of new materials-based anti-infective chemotherapeutic agents that have minimal potential for giving rise to antimicrobial resistance.


Subject(s)
Anti-Infective Agents , Carbonates , Drug Carriers , Escherichia coli/growth & development , Methicillin-Resistant Staphylococcus aureus/growth & development , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/pharmacology , Carbonates/chemistry , Carbonates/pharmacokinetics , Carbonates/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , beta-Lactam Resistance/drug effects
4.
Article in English | MEDLINE | ID: mdl-27014369

ABSTRACT

Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials.

5.
Biofabrication ; 6(4): 045010, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25427646

ABSTRACT

The purpose of this research was to produce multi-dimensional scaffolds containing biocompatible particles and fibres. To achieve this, two techniques were combined and used: T-Junction microfluidics and electrohydrodynamic (EHD) processing. The former was used to form layers of monodispersed bovine serum albumin (BSA) bubbles, which upon drying formed porous scaffolds. By altering the T-Junction processing parameters, bubbles with different diameters were produced and hence the scaffold porosity could be controlled. EHD processing was used to spray or spin poly(lactic-co-glycolic) (PLGA), polymethysilsesquioxane (PMSQ) and collagen particles/fibres onto the scaffolds during their production and after drying. As a result, multifunctional BSA scaffolds with controlled porosity containing PLGA, PMSQ and collagen particles/fibres were obtained. Product morphology was studied by optical and scanning electron microscopy. These products have potential applications in many advanced biomedical, pharmaceutical and cosmetic fields e.g. bone regeneration, drug delivery, cosmetic cream lathers, facial scrubbing creams etc.


Subject(s)
Biocompatible Materials/chemistry , Microfluidic Analytical Techniques/methods , Nanofibers/chemistry , Tissue Scaffolds , Animals , Cattle , Collagen , Lactic Acid , Materials Testing , Microbubbles , Organosilicon Compounds , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers , Porosity , Serum Albumin, Bovine
6.
Pharm Res ; 30(7): 1926-38, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23615857

ABSTRACT

PURPOSE: To produce electrospun polymeric fibrous wound dressing patches that can release the antibiotic drug amoxicillin in a controlled manner. METHODS: Poly(D,L-lactide-co-glycolide) acid (PLGA) fibrous dressings with entrapped amoxicillin were produced by electrospinning. The morphology and successful entrapment of amoxicillin in the PLGA fibrous dressings were validated by scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The rate of drug release from the dressing patches was measured in various media for a period of 21 days using UV spectroscopy. RESULTS: PLGA fibres entrapping amoxicillin were collected for 300 s and then cut to form square patches with an average weight of 55 mg. Each dressing patch contained ~2 mg of amoxicillin. The mean fibre diameter was 2.2 ± 0.4 µm. The drug release from the PLGA dressings was found to be different for each medium during the 21-day release period with the highest and lowest concentration of drug released observed when the dressings were immersed in simulated body fluid (SBF) and phosphate buffered saline (PBS), respectively. CONCLUSIONS: The release profiles obtained in this study and the well-established biocompatibility of PLGA indicate that the fibre-based patches with entrapped amoxicillin fabricated in this work are very well suited for applications in wound healing and infection control.


Subject(s)
Amoxicillin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Bandages , Delayed-Action Preparations/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
7.
Mater Sci Eng C Mater Biol Appl ; 33(1): 213-23, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-25428065

ABSTRACT

Electrohydrodynamic (EHD) processing has attracted substantial interest in the technological and pharmaceutical sectors in recent years. Given the complexity of the process, exploring new ideas for EHD electrospraying and electrospinning delivery is a challenge. In this article, the design, construction and testing of a portable handheld EHD multi-needle device are described to produce multifunctional particles and fibers. Solid and encapsulated polymer particles and fibers were generated in order to study the performance of the device. The intrinsic properties of the feed solution/suspension and the processing conditions were adjusted to ensure robustness of the process and give uniform and reproducible products, with diameters ranging from the sub-micrometer scale to a few micrometers. These products have a broad range of applications in many advanced industrial sectors e.g. drug delivery systems, wound dressing patches, low calorie food products and cosmetics.


Subject(s)
Biocompatible Materials/chemistry , Drug Delivery Systems/instrumentation , Equipment Design , Hydrodynamics , Lactic Acid/chemistry , Microscopy , Needles , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
SELECTION OF CITATIONS
SEARCH DETAIL