Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin J Am Soc Nephrol ; 17(2): 184-193, 2022 02.
Article in English | MEDLINE | ID: mdl-35131927

ABSTRACT

BACKGROUND AND OBJECTIVES: AKI, a frequent complication among hospitalized patients, confers excess short- and long-term mortality. We sought to determine trends in in-hospital and 1-year mortality associated with AKI as defined by Kidney Disease Improving Global Outcomes consensus criteria. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This retrospective cohort study used data from the national Veterans Health Administration on all patients hospitalized from October 1, 2008 to September 31, 2017. AKI was defined by Kidney Disease Improving Global Outcomes serum creatinine criteria. In-hospital and 1-year mortality trends were analyzed in patients with and without AKI using Cox regression with year as a continuous variable. RESULTS: We identified 1,688,457 patients and 2,689,093 hospitalizations across the study period. Among patients with AKI, 6% died in hospital, and 28% died within 1 year. In contrast, in-hospital and 1-year mortality rates were 0.8% and 14%, respectively, among non-AKI hospitalizations. During the study period, there was a slight decline in crude in-hospital AKI-associated mortality (hazard ratio, 0.98 per year; 95% confidence interval, 0.98 to 0.99) that was attenuated after accounting for patient demographics, comorbid conditions, and acute hospitalization characteristics (adjusted hazard ratio, 0.99 per year; 95% confidence interval, 0.99 to 1.00). This stable temporal trend in mortality persisted at 1 year (adjusted hazard ratio, 1.00 per year; 95% confidence interval, 0.99 to 1.00). CONCLUSIONS: AKI associated mortality remains high, as greater than one in four patients with AKI died within 1 year of hospitalization. Over the past decade, there seems to have been no significant progress toward improving in-hospital or long-term AKI survivorship.


Subject(s)
Acute Kidney Injury/mortality , Hospital Mortality/trends , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Time Factors , United States , Veterans Health , Young Adult
2.
Blood Purif ; 51(8): 660-667, 2022.
Article in English | MEDLINE | ID: mdl-34727545

ABSTRACT

BACKGROUND AND OBJECTIVES: Acute kidney injury (AKI) is a common complication among patients with COVID-19 and acute respiratory distress syndrome. Reports suggest that COVID-19 confers a pro-thrombotic state, which presents challenges in maintaining hemofilter patency and delivering continuous renal replacement therapy (CRRT). We present our initial experience with CRRT in critically ill patients with COVID-19, emphasizing circuit patency and the association between fluid balance during CRRT and respiratory parameters. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS: Retrospective chart review of 32 consecutive patients with COVID-19 and AKI managed with continuous venovenous hemodiafiltration with regional citrate anticoagulation (CVVHDF-RCA) according to the University of Michigan protocol. Primary outcome was mean CRRT circuit life per patient during the first 7 days of CRRT. We used simple linear regression to assess the relationship between patient characteristics and filter life. We also explored the relationship between fluid balance on CRRT and respiratory parameters using repeated measures modeling. RESULTS: Patients' mean age was 54.8 years and majority were Black (75%). Comorbidities included hypertension (90.6%), obesity (70.9%) diabetes (56.2%), and chronic kidney disease (40.6%). Median CRRT circuit life was 53.5 [interquartile range 39.1-77.6] hours. There was no association between circuit life and inflammatory or pro-thrombotic laboratory values (ferritin p = 0.92, C-reactive protein p = 0.29, D-dimer p = 0.24), or with systemic anticoagulation (p = 0.37). Net daily fluid removal during the first 7 days of CRRT was not associated with daily (closest recorded values to 20:00) PaO2/FIO2 ratio (p = 0.21) or positive end-expiratory pressure requirements (p = 0.47). CONCLUSIONS: We achieved adequate CRRT circuit life in COVID-19 patients using an established CVVHDF-RCA protocol. During the first 7 days of CRRT therapy, cumulative fluid balance was not associated with improvements in respiratory parameters, even after accounting for baseline fluid balance.


Subject(s)
Acute Kidney Injury , COVID-19 , Continuous Renal Replacement Therapy , Thrombosis , Acute Kidney Injury/etiology , Anticoagulants , COVID-19/complications , COVID-19/therapy , Critical Illness/therapy , Humans , Middle Aged , Renal Replacement Therapy/methods , Retrospective Studies , Thrombosis/complications
3.
Adv Chronic Kidney Dis ; 28(1): 105-113, 2021 01.
Article in English | MEDLINE | ID: mdl-34389131

ABSTRACT

Acute kidney injury (AKI) is a common complication of critical illness and is associated with adverse short- and long-term health consequences. Survivors of critical illness and AKI experience poor kidney, cardiovascular and quality of life outcomes, along with increased mortality. Yet, many patients surviving AKI are unaware that there is a problem with their kidney health, and post-AKI nephrology follow-up occurs at very low rates. Although there is a paucity of evidence-based studies to guide post-AKI care, attention to risk factors such as hypertension and albuminuria are requisite. There are several ongoing or planned studies which are expected to help inform specific management in the future. Until then, a multidisciplinary approach is warranted to address areas such as quality of life, physical rehabilitation, dietary modifications, and medication reconciliation.


Subject(s)
Acute Kidney Injury , Nephrology , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Critical Illness , Humans , Quality of Life , Survivors
4.
BMC Nephrol ; 22(1): 244, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215201

ABSTRACT

BACKGROUND: Regional citrate anticoagulation (RCA) for the prevention of clotting of the extracorporeal blood circuit during continuous kidney replacement therapy (CKRT) has been employed in limited fashion because of the complexity and complications associated with certain protocols. Hypertonic citrate infusion to achieve circuit anticoagulation results in variable systemic citrate- and sodium load and increases the risk of citrate accumulation and hypernatremia. The practice of "single starting calcium infusion rate for all patients" puts patients at risk for clinically significant hypocalcemia if filter effluent calcium losses exceed replacement. A fixed citrate to blood flow ratio, personalized effluent and pre-calculated calcium infusion dosing based on tables derived through kinetic analysis enable providers to use continuous veno-venous hemo-diafiltration (CVVHDF)-RCA in patients with liver citrate clearance of at least 6 L/h. METHODS: This was a single-center prospective observational study conducted in intensive care unit patients triaged to be treated with the novel pre-calculated CVVHDF-RCA "Non-shock" protocol. RCA efficacy outcomes were time to first hemofilter loss and circuit ionized calcium (iCa) levels. Safety outcomes were surrogate of citrate accumulation (TCa/iCa ratio) and the incidence of acid-base and electrolyte complications. RESULTS: Of 53 patients included in the study, 31 (59%) had acute kidney injury and 12 (22.6%) had the diagnosis of cirrhosis at the start of CVVHDF-RCA. The median first hemofilter life censored for causes other than clotting exceeded 70 h. The cumulative incidence of hypernatremia (Na > 148 mM), metabolic alkalosis (HCO3- > 30 mM), hypocalcemia (iCa < 0.9 mM) and hypercalcemia (iCa > 1.5 mM) were 1/47 (1%), 0/50 (0%), 1/53 (2%), 1/53 (2%) respectively and were not clinically significant. The median (25th-75th percentile) of the highest TCa/iCa ratio for every 24-h interval on CKRT was 1.99 (1.91-2.13). CONCLUSIONS: The fixed citrate to blood flow ratio, as opposed to a titration approach, achieves adequate circuit iCa (< 0.4 mm/L) for any hematocrit level and plasma flow. The personalized dosing approach for calcium supplementation based on pre-calculated effluent calcium losses as opposed to the practice of "one starting dose for all" reduces the risk of clinically significant hypocalcemia. The fixed flow settings achieve clinically desirable steady state systemic electrolyte levels.


Subject(s)
Anticoagulants/administration & dosage , Anticoagulants/pharmacokinetics , Citric Acid/administration & dosage , Citric Acid/pharmacokinetics , Clinical Protocols , Continuous Renal Replacement Therapy/instrumentation , Continuous Renal Replacement Therapy/methods , Liver/metabolism , Aged , Continuous Renal Replacement Therapy/adverse effects , Critical Care , Female , Humans , Kidneys, Artificial , Male , Middle Aged , Prospective Studies , Solutions
6.
Kidney360 ; 2(2): 192-204, 2021 02 25.
Article in English | MEDLINE | ID: mdl-35373034

ABSTRACT

Background: Regional citrate anticoagulation (RCA) is not recommended in patients with shock or severe liver failure. We designed a protocol with personalized precalculated flow settings for patients with absent citrate metabolism that abrogates risk of citrate toxicity, and maintains neutral continuous KRT (CKRT) circuit calcium mass balance and normal systemic ionized calcium levels. Methods: A single-center prospective cohort study of patients in five adult intensive care units triaged to the CVVHDF-RCA "Shock" protocol. Results: Of 31 patients included in the study, 30 (97%) had AKI, 16 (52%) had acute liver failure, and five (16%) had cirrhosis at the start of CKRT. The median lactate was 5 mmol/L (interquartile range [IQR], 3.2-10.7), AST 822 U/L (IQR, 122-2950), ALT 352 U/L (IQR, 41-2238), total bilirubin 2.7 mg/dl (IQR, 1.0-5.1), and INR two (IQR, 1.5-2.6). The median first hemofilter life censored for causes other than clotting exceeded 70 hours. The cumulative incidence of hypernatremia (Na >148 mM), metabolic alkalosis (HCO3- >30 mM), and hypophosphatemia (P<2 mg/dl) were one out of 26 (4%), zero out of 30 (0%), and one out of 30 (3%), respectively, and were not clinically significant. Mild hypocalcemia occurred in the first 4 hours in two out of 31 patients, and corrected by hour 6 with no additional Ca supplementation beyond the per-protocol administered Ca infusion. The maximum systemic total Ca (tCa; mM)/ionized Ca (iCa; mM) ratio never exceeded 2.5. Conclusions: The Shock protocol can be used without contraindications and is effective in maintaining circuit patency with a high, fixed ACDA infusion rate to blood flow ratio. Keeping single-pass citrate extraction on the dialyzer >0.75 minimizes the risk of citrate toxicity even in patients with absent citrate metabolism. Precalculated, personalized dosing of the initial Ca-infusion rate from a table on the basis of the patient's albumin level and the filter effluent flow rate maintains neutral CKRT circuit calcium mass balance and a normal systemic iCa level.


Subject(s)
Anticoagulants , Citric Acid , Adult , Anticoagulants/adverse effects , Blood Coagulation , Citric Acid/therapeutic use , Humans , Prospective Studies , Renal Dialysis/methods
9.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Article in English | MEDLINE | ID: mdl-33038424

ABSTRACT

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetic Nephropathies/metabolism , Kidney Tubules, Proximal/metabolism , SARS-CoV-2/metabolism , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/complications , COVID-19/virology , Case-Control Studies , Diabetic Nephropathies/drug therapy , Female , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Kidney Tubules, Proximal/drug effects , Male , Middle Aged
10.
medRxiv ; 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32511461

ABSTRACT

COVID-19 morbidity and mortality is increased in patients with diabetes and kidney disease via unknown mechanisms. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Since ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease (DKD) and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of healthy living donor (LD) and DKD kidney biopsies revealed ACE2 expression primarily in proximal tubular epithelial cells (PTEC). This cell specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin angiotensin aldosterone system inhibitors in DKD. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing PTEC in DKD (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The DKD ACE2-positive PTEC module overlapped with expression patterns seen in SARS-CoV-2 infected cells. Similar cellular programs were seen in ACE2-positive PTEC obtained from urine samples of 13 COVID-19 patients who were hospitalized, suggesting a consistent ACE2-coregulated PTEC expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19 related kidney damage.

11.
Cardiovasc Psychiatry Neurol ; 2013: 159850, 2013.
Article in English | MEDLINE | ID: mdl-23710335

ABSTRACT

Atrial fibrillation (AF) is the most commonly seen arrhythmia in clinical practice. At present, few studies have been conducted centering on depression and anxiety in AF patients. Our aim in this systematic review is to use the relevant literature to (1) describe the prevalence of depression and anxiety in AF patients, (2) assess the impact that depression and anxiety have on illness perception in patients with AF, (3) provide evidence to support a hypothetical connection between the pathophysiology of AF and depression and anxiety, (4) evaluate the benefit of treatment of AF on depression and anxiety, and (5) give insight on medically managing a patient with AF and concomitant depression and anxiety.

SELECTION OF CITATIONS
SEARCH DETAIL
...