Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 19(9): 2518-27, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23532891

ABSTRACT

PURPOSE: Targeted nanotherapies are being developed to improve tumor drug delivery and enhance therapeutic response. Techniques that can predict response will facilitate clinical translation and may help define optimal treatment strategies. We evaluated the efficacy of diffusion-weighted magnetic resonance imaging to monitor early response to CRLX101 (a cyclodextrin-based polymer particle containing the DNA topoisomerase I inhibitor camptothecin) nanotherapy (formerly IT-101), and explored its potential as a therapeutic response predictor using a mechanistic model of tumor cell proliferation. EXPERIMENTAL DESIGN: Diffusion MRI was serially conducted following CRLX101 administration in a mouse lymphoma model. Apparent diffusion coefficients (ADCs) extracted from the data were used as treatment response biomarkers. Animals treated with irinotecan (CPT-11) and saline were imaged for comparison. ADC data were also input into a mathematical model of tumor growth. Histological analysis using cleaved-caspase 3, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, Ki-67, and hematoxylin and eosin (H&E) were conducted on tumor samples for correlation with imaging results. RESULTS: CRLX101-treated tumors at day 2, 4, and 7 posttreatment exhibited changes in mean ADC = 16 ± 9%, 24 ± 10%, 49 ± 17%, and size (TV) = -5 ± 3%, -30 ± 4%, and -45 ± 13%, respectively. Both parameters were statistically greater than controls [p(ADC) ≤ 0.02, and p(TV) ≤ 0.01 at day 4 and 7], and noticeably greater than CPT-11-treated tumors (ADC = 5 ± 5%, 14 ± 7%, and 18 ± 6%; TV = -15 ± 5%, -22 ± 13%, and -26 ± 8%). Model-derived parameters for cell proliferation obtained using ADC data distinguished CRLX101-treated tumors from controls (P = 0.02). CONCLUSIONS: Temporal changes in ADC specified early CRLX101 treatment response and could be used to model image-derived cell proliferation rates following treatment. Comparisons of targeted and nontargeted treatments highlight the utility of noninvasive imaging and modeling to evaluate, monitor, and predict responses to targeted nanotherapeutics.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/administration & dosage , Cyclodextrins/administration & dosage , Diffusion Magnetic Resonance Imaging , Lymphoma/pathology , Animals , Cell Line, Tumor , Female , Humans , Lymphoma/drug therapy , Mice , Mice, Nude , Models, Biological , Nanomedicine , Treatment Outcome , Tumor Burden , Xenograft Model Antitumor Assays
2.
J Nucl Med ; 53(7): 1102-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22661534

ABSTRACT

UNLABELLED: Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. METHODS: Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following (64)Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. RESULTS: The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both (18)F-FDG and a (64)Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing diffusion MRI and radiolabeled antibody uptake patterns over time and visualized movement of antibodies from the vascular space into the tumor mass. CONCLUSION: The MRI-compatible PET scanner provided tumor images that were quantitatively accurate and spatially concordant with autoradiography and the small-animal PET examination. Cooccurrence matrix approaches enabled effective analysis of multimodal image sets. These observations confirm the ability of the current simultaneous PET/MRI system to provide accurate observations of intratumoral function and serve as a benchmark for future evaluations of hybrid instrumentation.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Algorithms , Animals , Antibodies , Autoradiography , Calibration , Copper Radioisotopes , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Mice , Mice, Inbred C57BL , Phantoms, Imaging , Radiopharmaceuticals , Reproducibility of Results
3.
Biomaterials ; 32(29): 7209-16, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21742374

ABSTRACT

In a number of literature reports iron oxide nanoparticles have been investigated for use in imaging atherosclerotic plaques and found to accumulate in plaques via uptake by macrophages, which are critical in the process of atheroma initiation, propagation, and rupture. However, the uptake of these agents is non-specific; thus the labeling efficiency for plaques in vivo is not ideal. We have developed targeted agents to improve the efficiency for labeling macrophage-laden plaques. These probes are based on iron oxide nanoparticles coated with dextran sulfate, a ligand of macrophage scavenger receptor type A (SR-A). We have sulfated dextran-coated iron oxide nanoparticles (DIO) with sulfur trioxide, thereby targeting our nanoparticle imaging agents to SR-A. The sulfated DIO (SDIO) remained mono-dispersed and had an average hydrodynamic diameter of 62 nm, an r(1) relaxivity of 18.1 mM(-1) s(-1), and an r(2) relaxivity of 95.8 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that these nanoparticles were nontoxic and specifically targeted to macrophages. In vivo MRI after intravenous injection of the contrast agent into an atherosclerotic mouse injury model showed substantial signal loss on the injured carotid at 4 and 24 h post-injection of SDIO. No discernable signal decrease was seen at the control carotid and only mild signal loss was observed for the injured carotid post-injection of non-sulfated DIO, indicating preferential uptake of the SDIO particles at the site of atherosclerotic plaque. These results indicate that SDIO can facilitate MRI detection and diagnosis of vulnerable plaques in atherosclerosis.


Subject(s)
Ferric Compounds/chemistry , Magnetic Resonance Imaging/methods , Metal Nanoparticles/chemistry , Plaque, Atherosclerotic/pathology , Animals , Apolipoproteins E/genetics , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell Line , Humans , Materials Testing , Mice , Mice, Knockout , Molecular Structure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL