Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3572, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328474

ABSTRACT

Hund's rule coupling (J) has attracted much attention recently for its role in the description of the novel quantum phases of multi-orbital materials. Depending on the orbital occupancy, J can lead to various intriguing phases. However, experimental confirmation of the orbital occupancy dependency has been difficult as controlling the orbital degrees of freedom normally accompanies chemical inhomogeneities. Here, we demonstrate a method to investigate the role of orbital occupancy in J related phenomena without inducing inhomogeneities. By growing SrRuO3 monolayers on various substrates with symmetry-preserving interlayers, we gradually tune the crystal field splitting and thus the orbital degeneracy of the Ru t2g orbitals. It effectively varies the orbital occupancies of two-dimensional (2D) ruthenates. Via in-situ angle-resolved photoemission spectroscopy, we observe a progressive metal-insulator transition (MIT). It is found that the MIT occurs with orbital differentiation: concurrent opening of a band insulating gap in the dxy band and a Mott gap in the dxz/yz bands. Our study provides an effective experimental method for investigation of orbital-selective phenomena in multi-orbital materials.


Subject(s)
Research Design , Sarcomeres , Photoelectron Spectroscopy
2.
Sci Adv ; 9(8): eadd8328, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36827373

ABSTRACT

Boosting dielectric permittivity representing electrical polarizability of dielectric materials has been considered a keystone for achieving scientific breakthroughs as well as technological advances in various multifunctional devices. Here, we demonstrate sizable enhancements of low-frequency dielectric responses in oxygen-deficient oxide ceramics through specific treatments under humid environments. Ultrahigh dielectric permittivity (~5.2 × 106 at 1 Hz) is achieved by hydrogenation, when Ni-substituted BaTiO3 ceramics are exposed to high humidity. Intriguingly, thermal annealing can restore the dielectric on-state (exhibiting huge polarizability in the treated ceramics) to the initial dielectric off-state (displaying low polarizability of ~103 in the pristine ceramics after sintering). The conversion between these two dielectric states via the ambient environment-mediated treatments and the successive application of external stimuli allows us to realize reversible control of dielectric relaxation characteristics in oxide ceramics. Conceptually, our findings are of practical interest for applications to highly efficient dielectric-based humidity sensors.

3.
Nano Lett ; 23(3): 1036-1043, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36716295

ABSTRACT

The oxide interfaces between materials with different structural symmetries have been actively studied due to their novel physical properties. However, the investigation of intriguing interfacial phenomena caused by the oxygen octahedral tilt (OOT) proximity effect has not been fully exploited, as there is still no clear understanding of what determines the proximity length and what the underlying control mechanism is. Here, we achieved scalability of the OOT proximity effect in SrRuO3 (SRO) by epitaxial strain near the SRO/SrTiO3 heterointerface. We demonstrated that the OOT proximity length scale of SRO is extended from 4 unit cells to 14 unit cells by employing advanced scanning transmission electron microscopy. We also suggest that this variation may originate from changes in phonon dispersions due to electron-phonon coupling in SRO. This study will provide in-depth insights into the structural gradients of correlated systems and facilitate potential device applications.

4.
Adv Mater ; 34(42): e2205825, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36069028

ABSTRACT

Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3 is reported, which boosts the square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, it is experimentally demonstrated that three electrically controlled polar-ordering states lead to switchable and nonvolatile dielectric states for application of nondestructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates.

5.
Sci Adv ; 7(38): eabf9631, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34524855

ABSTRACT

Quantum materials (QMs) with strong correlation and nontrivial topology are indispensable to next-generation information and computing technologies. Exploitation of topological band structure is an ideal starting point to realize correlated topological QMs. Here, we report that strain-induced symmetry modification in correlated oxide SrNbO3 thin films creates an emerging topological band structure. Dirac electrons in strained SrNbO3 films reveal ultrahigh mobility (µmax ≈ 100,000 cm2/Vs), exceptionally small effective mass (m* ~ 0.04me), and nonzero Berry phase. Strained SrNbO3 films reach the extreme quantum limit, exhibiting a sign of fractional occupation of Landau levels and giant mass enhancement. Our results suggest that symmetry-modified SrNbO3 is a rare example of correlated oxide Dirac semimetals, in which strong correlation of Dirac electrons leads to the realization of a novel correlated topological QM.

6.
Sci Rep ; 11(1): 15863, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34354170

ABSTRACT

One critical factor for bolometer sensitivity is efficient electromagnetic heating of thermistor materials, which plasmonic nanogap structures can provide through the electric field enhancement. In this report, using finite element method simulation, electromagnetic heating of nanorod dimer antennas with a nanogap filled with vanadium dioxide (VO2) was studied for long-wavelength infrared detection. Because VO2 is a thermistor material, the electrical resistance between the two dimer ends depends on the dimer's temperature. The simulation results show that, due to the high heating ability of the nanogap, the temperature rise is several times higher than expected from the areal coverage. This excellent performance is observed over various nanorod lengths and gap widths, ensuring wavelength tunability and ultrafast operating speed, thereby making the dimer structures a promising candidate for high sensitivity bolometers.

7.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33910905

ABSTRACT

In past few decades, there have been substantial advances in theoretical material design and experimental synthesis, which play a key role in the steep ascent of developing functional materials with unprecedented properties useful for next-generation technologies. However, the ultimate goal of synthesis science, i.e., how to locate atoms in a specific position of matter, has not been achieved. Here, we demonstrate a unique way to inject elements in a specific crystallographic position in a composite material by strain engineering. While the use of strain so far has been limited for only mechanical deformation of structures or creation of elemental defects, we show another powerful way of using strain to autonomously control the atomic position for the synthesis of new materials and structures. We believe that our synthesis methodology can be applied to wide ranges of systems, thereby providing a new route to functional materials.

8.
Sci Rep ; 10(1): 18554, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33122724

ABSTRACT

Oxygen defects are essential building blocks for designing functional oxides with remarkable properties, ranging from electrical and ionic conductivity to magnetism and ferroelectricity. Oxygen defects, despite being spatially localized, can profoundly alter global properties such as the crystal symmetry and electronic structure, thereby enabling emergent phenomena. In this work, we achieved tunable metal-insulator transitions (MIT) in oxide heterostructures by inducing interfacial oxygen vacancy migration. We chose the non-stoichiometric VO2-δ as a model system due to its near room temperature MIT temperature. We found that depositing a TiO2 capping layer on an epitaxial VO2 thin film can effectively reduce the resistance of the insulating phase in VO2, yielding a significantly reduced ROFF/RON ratio. We systematically studied the TiO2/VO2 heterostructures by structural and transport measurements, X-ray photoelectron spectroscopy, and ab initio calculations and found that oxygen vacancy migration from TiO2 to VO2 is responsible for the suppression of the MIT. Our findings underscore the importance of the interfacial oxygen vacancy migration and redistribution in controlling the electronic structure and emergent functionality of the heterostructure, thereby providing a new approach to designing oxide heterostructures for novel ionotronics and neuromorphic-computing devices.

9.
Sci Adv ; 6(27): eaaz3902, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32923583

ABSTRACT

Chiral interactions in magnetic systems can give rise to rich physics manifested, for example, as nontrivial spin textures. The foremost interaction responsible for chiral magnetism is the Dzyaloshinskii-Moriya interaction (DMI), resulting from inversion symmetry breaking in the presence of strong spin-orbit coupling. However, the atomistic origin of DMIs and their relationship to emergent electrodynamic phenomena, such as topological Hall effect (THE), remain unclear. Here, we investigate the role of interfacial DMIs in 3d-5d transition metal-oxide-based LaMnO3/SrIrO3 superlattices on THE from a chiral spin texture. By additively engineering the interfacial inversion symmetry with atomic-scale precision, we directly link the competition between interfacial collinear ferromagnetic interactions and DMIs to an enhanced THE. The ability to control the DMI and resulting THE points to a pathway for harnessing interfacial structures to maximize the density of chiral spin textures useful for developing high-density information storage and quantum magnets for quantum information science.

10.
Nat Commun ; 10(1): 589, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718483

ABSTRACT

Artificial heterostructures composed of dissimilar transition metal oxides provide unprecedented opportunities to create remarkable physical phenomena. Here, we report a means to deliberately control the orbital polarization in LaNiO3 (LNO) through interfacing with SrCuO2 (SCO), which has an infinite-layer structure for CuO2. Dimensional control of SCO results in a planar-type (P-SCO) to chain-type (C-SCO) structure transition depending on the SCO thickness. This transition is exploited to induce either a NiO5 pyramidal or a NiO6 octahedral structure at the SCO/LNO interface. Consequently, a large change in the Ni d orbital occupation up to ~30% is achieved in P-SCO/LNO superlattices, whereas the Ni eg orbital splitting is negligible in C-SCO/LNO superlattices. The engineered oxygen coordination triggers a metal-to-insulator transition in SCO/LNO superlattices. Our results demonstrate that interfacial oxygen coordination engineering provides an effective means to manipulate the orbital configuration and associated physical properties, paving a pathway towards the advancement of oxide electronics.

11.
Adv Mater ; 31(4): e1805389, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30489665

ABSTRACT

Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, FMIs are innately rare to find in nature as ferromagnetism generally accompanies metallicity. Here, novel room-temperature FMI films that are epitaxially synthesized by deliberate control of the ratio between two B-site cations in the double perovskite Sr2 Fe1+ x Re1- x O6 (-0.2 ≤ x ≤ 0.2) are reported. In contrast to the known FM metallic phase in stoichiometric Sr2 FeReO6 , an FMI state with a high Curie temperature (Tc ≈ 400 K) and a large saturation magnetization (MS ≈ 1.8 µB f.u.-1 ) is found in highly cation-ordered Fe-rich phases. The stabilization of the FMI state is attributed to the formation of extra Fe3+ Fe3+ and Fe3+ Re6+ bonding states, which originate from the relatively excess Fe ions owing to the deficiency in Re ions. The emerging FMI state created by controlling cations in the oxide double perovskites opens the door to developing novel oxide quantum materials and spintronic devices.

12.
ACS Nano ; 12(7): 7159-7166, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29906092

ABSTRACT

Strongly correlated vanadium dioxide (VO2) is one of the most promising materials that exhibits a temperature-driven, metal-insulator transition (MIT) near room temperature. The ability to manipulate the MIT at nanoscale offers both insight into understanding the energetics of phase transition and a promising potential for nanoelectronic devices. In this work, we study nanoscale electrochemical modifications of the MIT in epitaxial VO2 thin films using a combined approach with scanning probe microscopy (SPM) and theoretical calculations. We find that applying electric voltages of different polarity through an SPM tip locally changes the contact potential difference and conductivity on the surface of VO2 by modulating the oxygen stoichiometry. We observed nearly 2 orders of magnitude change in resistance between positive and negative biased-tip written areas of the film, demonstrating the electric field modulated MIT behavior at the nanoscale. Density functional theory calculations, benchmarked against more accurate many-body quantum Monte Carlo calculations, provide information on the formation energetics of oxygen defects that can be further manipulated by strain. This study highlights the crucial role of oxygen vacancies in controlling the MIT in epitaxial VO2 thin films, useful for developing advanced electronic and iontronic devices.

13.
Adv Mater ; 30(42): e1704777, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29761925

ABSTRACT

The metal-insulator transition (MIT) in correlated materials is a novel phenomenon that accompanies a large change in resistivity, often many orders of magnitude. It is important in its own right but its switching behavior in resistivity can be useful for device applications. From the material physics point of view, the starting point of the research on the MIT should be to understand the microscopic mechanism. Here, an overview of recent efforts to unravel the microscopic mechanisms for various types of MITs in correlated materials is provided. Research has focused on transition metal oxides (TMOs), but transition metal chalcogenides have also been studied. Along the way, a new class of MIT materials is discovered, the so-called relativistic Mott insulators in 5d TMOs. Distortions in the MO6 (M = transition metal) octahedron are found to have a large and peculiar effect on the band structure in an orbital dependent way, possibly paving a way to the orbital selective Mott transition. In the final section, the character of the materials suitable for applications is summarized, followed by a brief discussion of some of the efforts to control MITs in correlated materials, including a dynamical approach using light.

14.
Adv Mater ; 30(15): e1705904, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29512212

ABSTRACT

Deliberate control of oxygen vacancy formation and migration in perovskite oxide thin films is important for developing novel electronic and iontronic devices. Here, it is found that the concentration of oxygen vacancies (VO ) formed in LaNiO3 (LNO) during pulsed laser deposition is strongly affected by the chemical potential mismatch between the LNO film and its proximal layers. Increasing the VO concentration in LNO significantly modifies the degree of orbital polarization and drives the metal-insulator transition. Changes in the nickel oxidization state and carrier concentration in the films are confirmed by soft X-ray absorption spectroscopy and optical spectroscopy. The ability to unidirectional-control the oxygen flow across the heterointerface, e.g., a so-called "oxygen diode", by exploiting chemical potential mismatch at interfaces provides a new avenue to tune the physical and electrochemical properties of complex oxides.

15.
Nat Commun ; 9(1): 92, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311690

ABSTRACT

Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden-Popper phase La2-xSr x CuO4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonly reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.

16.
Nano Lett ; 17(4): 2126-2130, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28256840

ABSTRACT

Charge transfer in superlattices consisting of SrIrO3 and SrMnO3 is investigated using density functional theory. Despite the nearly identical work function and nonpolar interfaces between SrIrO3 and SrMnO3, rather large charge transfer was experimentally reported at the interface between them. Here, we report a microscopic model that captures the mechanism behind this phenomenon, providing a qualitative understanding of the experimental observation. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment with soft X-ray and optical spectroscopy. Our work thus demonstrates a new route to control electronic states in nonpolar oxide heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...