Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Contrast Media Mol Imaging ; 2019: 5629597, 2019.
Article in English | MEDLINE | ID: mdl-31920468

ABSTRACT

Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T 1 relaxation time in tumor, while the T 1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.


Subject(s)
Contrast Media/pharmacology , Cyclic N-Oxides/pharmacology , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Piperidines/pharmacology , Animals , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy , HeLa Cells , Humans , Neoplasms/pathology , Piperidines/chemistry , Rats , Spin Labels
2.
Molecules ; 23(5)2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29702628

ABSTRACT

Cancer is a widespread and life-threatening disease and its early-stage diagnosis is vital. One of the most effective, non-invasive tools in medical diagnostics is magnetic resonance imaging (MRI) with the aid of contrast agents. Contrast agents that are currently in clinical use contain metals, causing some restrictions in their use. Also, these contrast agents are mainly non-specific without any tissue targeting capabilities. Subsequently, the interest has notably increased in the research of organic, metal-free contrast agents. This study presents a new, stable organic radical, TEEPO-Met, where a radical moiety 2,2,6,6-tetraethylpiperidinoxide (TEEPO) is attached to an amino acid, methionine (Met), as a potentially tumour-targeting moiety. We describe the synthesis, stability assessment with electron paramagnetic resonance (EPR) spectroscopy and relaxation enhancement abilities by an in vitro nuclear magnetic resonance (NMR) and phantom MRI studies of TEEPO-Met. The new compound proved to be stable notably longer than the average imaging time in conditions mimicking a biological matrix. Also, it significantly reduced the relaxation times of water, making it a promising candidate as a novel tumour targeting contrast agent for MRI.


Subject(s)
Contrast Media/chemical synthesis , Cyclic N-Oxides/chemistry , Heterocyclic Compounds/chemical synthesis , Methionine/chemistry , Piperidines/chemistry , Animals , Contrast Media/chemistry , Electron Spin Resonance Spectroscopy/methods , Heterocyclic Compounds/chemistry , Humans , Magnetic Resonance Imaging/methods , Molecular Structure , Neoplasms/diagnostic imaging , Phantoms, Imaging
3.
Acta Radiol ; 57(8): 947-54, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26543056

ABSTRACT

BACKGROUND: Abdominal diffusion-weighted imaging (DWI) has been rapidly increasing during the last few years. For the evaluation of new DWI techniques, the development of suitable phantoms and quality assurance methods is important. PURPOSE: To construct a body-diameter phantom for abdominal DWI and study the impact of different acquisition options on image quality. MATERIAL AND METHODS: A phantom with a diameter of 31 cm and a volume of 26 L was constructed, containing four samples representing a clinically relevant range of apparent diffusion coefficient (ADC) values. Measurements were carried out on 1.5T and 3.0T MRI systems using conventional echo-planar imaging (EPI), readout-segmented EPI, and zoomed EPI (3.0T) sequences. The effects of parallel imaging, coil intensity normalization, and patient-specific B1 shim (3.0T) were also examined. ADC values and signal-to-noise ratios of the samples were measured, and the level of artifacts was visually evaluated. RESULTS: The agreement of ADC values between different acquisition options was generally good, but higher values (by 0.07 × 10(-3) mm(2)/s on the average) with readout-segmented EPI as well as ADC variations of approximately 0.1 × 10(-3) mm(2)/s in slice direction were observed. The image artifacts were reduced by using patient-specific B1 shim, readout-segmented EPI, or zoomed EPI. CONCLUSION: The body-sized phantom demonstrated well the expected image artifacts in DWI with large field of view. The use of patient-specific B1 shim, readout-segmented EPI, or zoomed EPI improved image quality of DWI in this study.


Subject(s)
Abdomen/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Phantoms, Imaging , Artifacts , Echo-Planar Imaging/methods , Equipment Design , Humans , Signal-To-Noise Ratio
4.
PLoS One ; 10(6): e0131242, 2015.
Article in English | MEDLINE | ID: mdl-26107883

ABSTRACT

Unfavorable ratios between the number and activation status of effector and suppressor immune cells infiltrating the tumor contribute to resistance of solid tumors to T-cell based therapies. Here, we studied the capacity of FDA and EMA approved recombinant cytokines to manipulate this balance in favor of efficient anti-tumor responses in B16.OVA melanoma bearing C57BL/6 mice. Intratumoral administration of IFN-α2, IFN-γ, TNF-α, and IL-2 significantly enhanced the anti-tumor effect of ovalbumin-specific CD8+ T-cell (OT-I) therapy, whereas GM-CSF increased tumor growth in association with an increase in immunosuppressive cell populations. None of the cytokines augmented tumor trafficking of OT-I cells significantly, but injections of IFN-α2, IFN-γ and IL-2 increased intratumoral cytokine secretion and recruitment of endogenous immune cells capable of stimulating T-cells, such as natural killer and maturated CD11c+ antigen-presenting cells. Moreover, IFN-α2 and IL-2 increased the levels of activated tumor-infiltrating CD8+ T-cells concomitant with reduction in the CD8+ T-cell expression of anergy markers CTLA-4 and PD-1. In conclusion, intratumoral administration of IFN-α2, IFN-γ and IL-2 can lead to immune sensitization of the established tumor, whereas GM-CSF may contribute to tumor-associated immunosuppression. The results described here provide rationale for including local administration of immunostimulatory cytokines into T-cell therapy regimens. One appealing embodiment of this would be vectored delivery which could be advantageous over direct injection of recombinant molecules with regard to efficacy, cost, persistence and convenience.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cytokines/metabolism , Neoplasms/therapy , Tumor Microenvironment , Animals , Antigen-Presenting Cells/cytology , Female , Flow Cytometry , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Immune Tolerance , Immunotherapy/methods , Interferon-alpha/pharmacology , Interferon-gamma/pharmacology , Interleukin-2/pharmacology , Lymphocyte Activation/immunology , Lymphocyte Subsets , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Recombinant Proteins/metabolism , Tumor Necrosis Factor-alpha/pharmacology
5.
Oncoimmunology ; 4(3): e989771, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25949903

ABSTRACT

With the emergence of effective immunotherapeutics, which nevertheless harbor the potential for toxicity and are expensive to use, biomarkers are urgently needed for identification of cancer patients who respond to treatment. In this clinical-epidemiological study of 202 cancer patients treated with oncolytic adenoviruses, we address the biomarker value of serum high-mobility group box 1 (HMGB1) protein. Overall survival and imaging responses were studied as primary endpoints and adjusted for confounding factors in two multivariate analyses (Cox and logistic regression). Mechanistic studies included assessment of circulating tumor-specific T-cells by ELISPOT, virus replication by quantitative PCR, and inflammatory cytokines by cytometric bead array. Patients with low HMGB1 baseline levels (below median concentration) showed significantly improved survival (p = 0.008, Log-Rank test) and radiological disease control rate (49.2% vs. 30.0%, p = 0.038, χ2 test) as compared to high-baseline patients. In multivariate analyses, the low HMGB1 baseline status was a strong prognostic (HR 0.638, 95% CI 0.462-0.881) and the best predictive factor for disease control (OR 2.618, 95% CI 1.004-6.827). Indicative of an immune-mediated mechanism, antitumor T-cell activity in blood and response to immunogenic-transgene coding viruses associated with improved outcome only in HMGB1-low patients. Our results suggest that serum HMGB1 baseline is a useful prognostic and predictive biomarker for oncolytic immunotherapy with adenoviruses, setting the stage for prospective clinical studies.

6.
Cancer Immunol Res ; 3(8): 915-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25977260

ABSTRACT

Despite the rapid progress in the development of novel adoptive T-cell therapies, the clinical benefits in treatment of established tumors have remained modest. Several immune evasion mechanisms hinder T-cell entry into tumors and their activity within the tumor. Of note, oncolytic adenoviruses are intrinsically immunogenic due to inherent pathogen-associated molecular patterns. Here, we studied the capacity of adenovirus to overcome resistance of chicken ovalbumin-expressing B16.OVA murine melanoma tumors to adoptive ovalbumin-specific CD8(+) T-cell (OT-I) therapy. Following intraperitoneal transfer of polyclonally activated OT-I lymphocytes, control of tumor growth was superior in mice given intratumoral adenovirus compared with control mice, even in the absence of oncolytic virus replication. Preexisting antiviral immunity against serotype 5 did not hinder the therapeutic efficacy of the combination treatment. Intratumoral adenovirus injection was associated with an increase in proinflammatory cytokines, CD45(+) leukocytes, CD8(+) lymphocytes, and F4/80(+) macrophages, suggesting enhanced tumor immunogenicity. The proinflammatory effects of adenovirus on the tumor microenvironment led to expression of costimulatory signals on CD11c(+) antigen-presenting cells and subsequent activation of T cells, thus breaking the tumor-induced peripheral tolerance. An increased number of CD8(+) T cells specific for endogenous tumor antigens TRP-2 and gp100 was detected in combination-treated mice, indicating epitope spreading. Moreover, the majority of virus/T-cell-treated mice rejected the challenge of parental B16.F10 tumors, suggesting that systemic antitumor immunity was induced. In summary, we provide proof-of-mechanism data on combining adoptive T-cell therapy and adenovirotherapy for the treatment of cancer.


Subject(s)
Adenoviridae/immunology , Adoptive Transfer , Neoplasms/immunology , Neoplasms/therapy , Oncolytic Viruses/immunology , T-Lymphocytes/immunology , Adenoviridae Infections/immunology , Animals , Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Biomarkers , Clonal Anergy , Cross-Priming/immunology , Disease Models, Animal , Humans , Immunomodulation , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , T-Lymphocytes/metabolism
7.
Mol Ther Oncolytics ; 1: 14006, 2015.
Article in English | MEDLINE | ID: mdl-27119097

ABSTRACT

Successful cancer control relies on overcoming resistance to cell death and on activation of host antitumor immunity. Oncolytic viruses are particularly attractive in this regard, as they lyse infected tumor cells and trigger robust immune responses during the infection. However, repeated injections of the same virus promote antiviral rather than antitumor immunity and tumors may mount innate antiviral defenses to restrict oncolytic virus replication. In this article, we have explored if alternating the therapy virus could circumvent these problems. We demonstrate in two virus-resistant animal models a substantial delay in antiviral immune- and innate cellular response induction by alternating injections of two immunologically distinct oncolytic viruses, adenovirus, and vaccinia virus. Our results are in support of clinical development of heterologous adeno-/vaccinia virus therapy of cancer.

8.
Int J Cancer ; 135(3): 720-30, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24374597

ABSTRACT

Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing.


Subject(s)
Adenoviridae/genetics , Genetic Therapy , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Oncolytic Virotherapy , Sarcoma/therapy , Animals , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Injections, Intralesional , Mesocricetus , Mice , Mice, Nude , Prognosis , Sarcoma/blood , Sarcoma/mortality , Survival Rate , Tumor Cells, Cultured , Virus Replication , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...