Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
JCO Precis Oncol ; 8: e2300639, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838276

ABSTRACT

PURPOSE: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied. MATERIALS AND METHODS: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing. RESULTS: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted-P < .05) and displayed a prevalence of >0.5%. The most common rearrangements within BCBMs involves cyclin-dependent kinase 12 (CDK12; 3.53%) as compared with the local BC (0.86%; adjusted-P = 7.1 × 10-8) and Non-CNS M specimens (0.68%; adjusted-P = 3.7 × 10-10). CDK12 rearrangements had a significantly higher frequency within human epidermal growth factor receptor 2 (HER2)-positive BCBMs (14.59%) compared with HER2-positive BCs (7.80%; P = 4.6 × 10-3) and HER2-positive Non-CNS M (7.87%; P = 4.8 × 10-3). CONCLUSION: The most common structural rearrangements involve CDK12 with the higher prevalence in HER2-positive BCBMs. These data support more detailed investigation of the role and importance of CDK12 rearrangements in BCBMs.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Cyclin-Dependent Kinases , Gene Rearrangement , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Receptor, ErbB-2/genetics , Cyclin-Dependent Kinases/genetics , Middle Aged , Adult , Aged
2.
Target Oncol ; 19(3): 459-471, 2024 May.
Article in English | MEDLINE | ID: mdl-38613733

ABSTRACT

BACKGROUND: Panel-based comprehensive genomic profiling is used in clinical practice worldwide; however, large real-world datasets of patients with advanced gastric cancer are not well known. OBJECTIVE: We investigated what differences exist in clinically relevant alterations for molecularly defined or age-stratified subgroups. METHODS: This was a collaborative biomarker study of a real-world dataset from comprehensive genomic profiling testing (Foundation Medicine, Inc.). Hybrid capture was carried out on at least 324 cancer-related genes and select introns from 31 genes frequently rearranged in cancer. Overall, 4634 patients were available for analyses and were stratified by age (≥ 40/< 40 years), microsatellite instability status, tumor mutational burden status (high 10 ≥ /low < 10 Muts/Mb), Epstein-Barr virus status, and select gene alterations. We analyzed the frequency of alterations with a chi-square test with Yate's correction. RESULTS: Genes with frequent alterations included TP53 (60.1%), ARID1A (19.6%), CDKN2A (18.2%), KRAS (16.6%), and CDH1 (15.8%). Differences in comprehensive genomic profiling were observed according to molecularly defined or age-stratified subgroups. Druggable genomic alterations were detected in 31.4% of patients; ATM (4.4%), BRAF V600E (0.4%), BRCA1 (1.5%), BRCA2 (2.9%), ERBB2 amplification (9.2%), IDH1 (0.2%), KRAS G12C (0.7%), microsatellite instability-high (4.8%), NTRK1/2/3 fusion (0.13%), PIK3CA mutation (11.4%), and tumor mutational burden-high (9.4%). CDH1 alterations and MET amplification were significantly more frequent in patients aged < 40 years (27.7 and 6.2%) than in those aged ≥ 40 years (14.7 and 4.0%). CONCLUSIONS: Real-world datasets from clinical panel testing revealed the genomic landscape in gastric cancer by subgroup. These findings provide insights for the current therapeutic strategies and future development of treatments in gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/drug therapy , Male , Female , Middle Aged , Adult , Genomics/methods , Aged , Molecular Targeted Therapy/methods
3.
Mod Pathol ; 37(3): 100424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219954

ABSTRACT

The micropapillary subtype of urothelial carcinoma (MPUC) of the bladder is a very aggressive histological variant of urothelial bladder cancer (UBC). A high frequency of MPUC contains activating mutations in the extracellular domain (ECD) of ERBB2. We sought to further characterize ERBB2 ECD-mutated MPUC to identify additional genomic alterations that have been associated with tumor progression and therapeutic response. In total, 5,485 cases of archived formalin-fixed, paraffin-embedded UBC underwent comprehensive genomic profiling to identify ERBB2 ECD-mutated MPUC and evaluate the frequencies of genomic co-alterations. We identified 219 cases of UBC with ERBB2 ECD mutations (74% S310F and 26% S310Y), of which 63 (28.8%) were MPUC. Genomic analysis revealed that TERT, TP53, and ARID1A were the most common co-altered genes in ERBB2-mutant MPUC (82.5%, 58.7%, and 39.7%, respectively) and did not differ from ERBB2-mutant non-MPUC (86.5%, 51.9%, and 35.3%). The main differences between ERBB2 ECD-mutated MPUC compared with non-MPUC were KMT2D, RB1, and MTAP alterations. KMT2D and RB1 are tumor-suppressor genes. KMT2D frequency was significantly decreased in ERBB2 ECD-mutated MPUC (6.3%) in contrast to non-MPUC (27.6%; P < .001). RB1 mutations were more frequent in ERBB2 ECD-mutated MPUC (33.3%) than in non-MPUC (17.3%; P = .012). Finally, MTAP loss, an emerging biomarker for new synthetic lethality-based anticancer drugs, was less frequent in ERBB2 ECD-mutated MPUC (11.1%) than in non-MPUC (26.9%; P = .018). Characterizing the genomic landscape of MPUC may not only improve our fundamental knowledge about this aggressive morphological variant of UBC but also has the potential to identify possible prognostic and predictive biomarkers that may drive tumor progression and dictate treatment response to therapeutic approaches.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Urinary Bladder/pathology , Mutation , Genomics , Biomarkers, Tumor/genetics , Receptor, ErbB-2/genetics
4.
Oncologist ; 29(2): e213-e223, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37589222

ABSTRACT

The aim of this study was to determine the pan-cancer landscape of MUTYH alterations and the relationship between MUTYH mutations and potentially actionable biomarkers such as specific genomic alterations, tumor mutational burden, and mutational signatures. We used a large pan-cancer comprehensive genomic dataset from patients profiled (tissue next generation sequencing) during routine clinical care. Overall, 2.8% of 229 120 solid tumors had MUTYH alterations, of which 55% were predicted germline. Thirty tumor types had a 2% or greater MUTYH mutation rate. MUTYH-altered versus -WT cancers had significantly higher tumor mutational burden and more frequent alterations in KRAS G12C, but not in KRAS in general; these observations were statistically significant, especially in colorectal cancers. Across cancers, PD-L1 expression levels (immunohistochemistry) were not associated with MUTYH alteration status. In silico computation demonstrated that MUTYH mutational signatures are associated with higher levels of hydrophobicity (which may reflect higher immunogenicity of neoantigens) relative to several other signature types such as microsatellite instability. Survival of patients with MUTYH-altered versus -WT tumors was similar. In conclusion, comprehensive genomic profiling suggests that several features of MUTYH-altered cancers may be pharmacologically targetable. Drugs such as sotorasib (targeting KRAS G12C) and immune checkpoint inhibitors, targeting the increased mutational load and higher neo-antigen hydrophobicity/immunogenicity merit investigation in MUTYH-mutated malignancies.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Mutation , Mutation Rate , Neoplasms/genetics , Prevalence , Proto-Oncogene Proteins p21(ras)/genetics
5.
Breast Cancer Res Treat ; 204(1): 181-185, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37999916

ABSTRACT

PURPOSE: Approximately 5% of breast cancers each year are diagnosed in young women < 40 years who tend to have worse clinical outcomes. We compared genomic alterations using comprehensive genomic profiling (CGP) of tumor tissue among very young women (< 30 years) and young women (30-39 years) compared to women ≥ 40 years at diagnosis. METHODS: 2049 advanced breast cancer cases were submitted to Foundation Medicine within a 22-month window for CGP. Hybrid-capture based CGP was performed to evaluate all classes of genomic alterations. Tumor mutational burden was determined on at least 0.8 Mbp of sequenced DNA and microsatellite instability was determined on at least 95 loci. Immunocyte PD-L1 expression was determined by immunohistochemistry. RESULTS: Of the total cases, 28 (1.37%) were < 30 years, 159 (7.76%) were 30-39 years, and 1862 (90.87%) were ≥ 40 at time of diagnosis. Breast tumors were less likely to be estrogen receptor positive in younger women (54% of < 30 years, p > 0.05; 60% of 30-39 years, p < 0.001; 69.4% of ≥ 40 years) and more likely to be triple negative (43%, p = 0.05; 33%, p = 0.05; 26.1% respectively). Young women had higher rates of BRCA1 mutations (17.9% <30 years, p < 0.001; 10.1% 30-39 years, p < 0.001; 2.6% ≥40 years), but lower rates of CDH1 (7.1% <30 years, p > 0.05; 5.0% 30-39 years, p < 0.001; 15.4% ≥40 years) and PIK3CA mutations (17.9% <30 years, p = 0.02; 17.6% 30-39 years, p < 0.001; 40.0% ≥40 years). CONCLUSION: Our findings contribute to the growing literature demonstrating unique genetic profiles among young women diagnosed with breast cancer, compared to older women.


Subject(s)
Breast Neoplasms , Humans , Female , Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cross-Sectional Studies , Mutation , Prevalence , Genomics , Biomarkers, Tumor/genetics
6.
Eur Urol Oncol ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38072760

ABSTRACT

BACKGROUND AND OBJECTIVE: BRCA2 mutations in metastatic castration-resistant prostate cancer (mCRPC) confer sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors. However, additional factors predicting PARP inhibitor efficacy in mCRPC are needed. Preclinical studies support a relationship between speckle-type POZ protein (SPOP) inactivation and PARP inhibitor sensitivity. We hypothesized that SPOP mutations may predict enhanced PARP inhibitor response in BRCA2-altered mCRPC. METHODS: We conducted a multicenter retrospective study involving 13 sites. We identified 131 patients with BRCA2-altered mCRPC treated with PARP inhibitors, 14 of which also carried concurrent SPOP mutations. The primary efficacy endpoint was prostate-specific antigen (PSA) response rate (≥50% PSA decline). The secondary endpoints were biochemical progression-free survival (PSA-PFS), clinical/radiographic progression-free survival (PFS), and overall survival (OS). These were compared by multivariable Cox proportional hazard models adjusting for age, tumor stage, baseline PSA level, Gleason sum, prior therapies, BRCA2 alteration types, and co-occurring mutations. KEY FINDINGS AND LIMITATIONS: Baseline characteristics were similar between groups. PSA responses were observed in 60% (70/117) of patients with BRCA2mut/SPOPwt disease and in 86% (12/14) of patients with BRCA2mut/SPOPmut disease (p = 0.06). The median time on PARP inhibitor treatment was 24.0 mo (95% confidence interval [CI] 19.2 mo to not reached) in this group versus 8.0 mo (95% CI 6.1-10.9 mo) in patients with BRCA2 mutation alone (p = 0.05). In an unadjusted analysis, patients with BRCA2mut/SPOPmut disease experienced longer PSA-PFS (hazard ratio [HR] 0.33 [95% CI 0.15-0.72], p = 0.005) and clinical/radiographic PFS (HR 0.4 [95% CI 0.18-0.86], p = 0.02), and numerically longer OS (HR 0.4 [95% CI 0.15-1.12], p = 0.08). In a multivariable analysis including histology, Gleason sum, prior taxane, prior androgen receptor pathway inhibitor, stage, PSA, BRCA2 alteration characteristics, and other co-mutations, patients with BRCA2mut/SPOPmut disease experienced longer PSA-PFS (HR 0.16 [95% CI 0.05-0.47], adjusted p = 0.001), clinical/radiographic PFS (HR 0.28 [95% CI 0.1-0.81], adjusted p = 0.019), and OS (HR 0.19 [95% CI 0.05-0.69], adjusted p = 0.012). In a separate cohort of patients not treated with a PARP inhibitor, there was no difference in OS between patients with BRCA2mut/SPOPmut versus BRCA2mut/SPOPwt disease (HR 0.97 [95% CI 0.40-2.4], p = 0.94). In a genomic signature analysis, Catalog of Somatic Mutations in Cancer (COSMIC) SBS3 scores predictive of homologous recombination repair (HRR) defects were higher for BRCA2mut/SPOPmut than for BRCA2mut/SPOPwt disease (p = 0.04). This was a retrospective study, and additional prospective validation cohorts are needed. CONCLUSIONS AND CLINICAL IMPLICATIONS: In this retrospective analysis, PARP inhibitors appeared more effective in patients with BRCA2mut/SPOPmut than in patients with BRCA2mut/SPOPwt mCRPC. This may be related to an increase in HRR defects in coaltered disease. PATIENT SUMMARY: In this study, we demonstrate that co-alteration of both BRCA2 and SPOP predicts superior clinical outcomes to treatment with poly (ADP-ribose) polymerase (PARP) inhibitors than BRCA2 alteration without SPOP mutation.

7.
JCO Precis Oncol ; 7: e2300091, 2023 09.
Article in English | MEDLINE | ID: mdl-37992259

ABSTRACT

PURPOSE: Poly ADP-ribose polymerase inhibitors (PARPi) are approved for patients with human epidermal growth factor receptor 2-negative metastatic breast cancer (mBC) and germline pathogenic/likely pathogenic variant (hereafter mutation) in the BRCA1/2 genes (gBRCA); however, clinical benefit has also been demonstrated in mBC with somatic BRCA1/2 mutations (sBRCA) or germline PALB2 mutations (gPALB2). This study aims to describe the genomic landscape of homologous recombination repair (HRR) gene alterations in mBC and assess PARPi treatment outcomes for patients with gBRCA compared with other HRR genes and by status of a novel homologous recombination deficiency signature (HRDsig). METHODS: A real-world (RW) clinico-genomic database (CGDB) of comprehensive genomic profiling (CGP) linked to deidentified, electronic health record-derived clinical data was used. CGP was analyzed for HRR genes and HRDsig. The CGDB enabled cohort characterization and outcomes analyses of 177 patients exposed to PARPi. RW progression-free survival (rwPFS) and RW overall survival (rwOS) were compared. RESULTS: Of 28,920 patients with mBC, gBRCA was detected in 3.4%, whereas the population with any BRCA alteration or gPALB2 increased to 9.5%. HRDsig+ represented 21% of patients with mBC. BRCA and gPALB2 had higher levels of biallelic loss and HRDsig+ than other HRR alterations. Outcomes on PARPi were assessed for 177 patients, and gBRCA and sBRCA/gPALB2 cohorts were similar: gBRCA versus sBRCA/gPALB2 rwPFS was 6.3 versus 5.4 months (hazard ratio [HR], 1.37 [0.77-2.43]); rwOS was 16.2 versus 21.2 months (HR, 1.45 [0.74-2.86]). Additionally, patients with HRDsig+ versus HRDsig- had longer rwPFS (6.3 v 2.8 months; HR, 0.62 [0.42-0.92]) and numerically longer rwOS (17.8 v 13.0 months; HR, 0.72 [0.46-1.14]). CONCLUSION: Patients with sBRCA and gPALB2 derive similar benefit from PARPi as those with gBRCA alterations. In combination, HRDsig+, sBRCA, and gPALB2 represent an additional 19% of mBC that can potentially benefit from PARPi. Randomized trials exploring a more inclusive biomarker such as HRDsig are warranted.


Subject(s)
Breast Neoplasms , Homologous Recombination , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Genes, BRCA1 , Genes, BRCA2 , Fanconi Anemia Complementation Group N Protein/genetics , Germ-Line Mutation , Male , Adult , Middle Aged , Aged
8.
Cancer Cell ; 41(11): 1963-1971.e3, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37890492

ABSTRACT

Cancer genomes from patients with African (AFR) ancestry have been poorly studied in clinical research. We leverage two large genomic cohorts to investigate the relationship between genomic alterations and AFR ancestry in six common cancers. Cross-cancer type associations, such as an enrichment of MYC amplification with AFR ancestry in lung, breast, and prostate cancers, and depletion of BRAF alterations are observed in colorectal and pancreatic cancers. There are differences in actionable alterations, such as depletion of KRAS G12C and EGFR L858R, and enrichment of ROS1 fusion with AFR ancestry in lung cancers. Interestingly, in lung cancer, KRAS mutations are less common in both smokers and non-smokers with AFR ancestry, whereas the association of TP53 mutations with AFR ancestry is only seen in smokers, suggesting an ancestry-environment interaction that modifies driver rates. Our study highlights the need to increase representation of patients with AFR ancestry in drug development and biomarker discovery.


Subject(s)
Lung Neoplasms , Protein-Tyrosine Kinases , Male , Humans , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation
9.
Lung Cancer ; 185: 107359, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37703610

ABSTRACT

OBJECTIVES: Liquid biopsy with next-generation sequencing (NGS) has emerged as a promising tool for tumor mutation profiling. In this study, we describe the genomic profile of Italian lung cancer patients tested with blood-based comprehensive genomic profiling (CGP) to assess the genomic landscape complexity and its impact on enhancing treatment options for patients. MATERIALS AND METHODS: Between January 2021 and December 2021, a total of 229 lung cancer patients were profiled by FoundationOne®Liquid CDx (F1LCDx®) assay on circulating tumor DNA (ctDNA). F1LCDx® reports alterations across 324 cancer-related genes and genomic signatures, including tumor fraction (TF) and blood-based tumor mutational burden (bTMB). Detected variants were classified according to the ESMO Scale of Clinical Actionability for molecular Targets (ESCAT). RESULTS: 90.4% of patients had at least one detectable alteration in plasma. The most frequently mutated genes were TP53 (47.6%), DNMT3A (33.2%), EGFR (20.1%), and KRAS (15.7%). Elevated TF was detected in 18.3% of patients, suggesting high reliability of test results. According to the ESCAT classification, potentially actionable alterations (Tier I-II) were identified in 27.1% of samples. An additional 5.2% harbored an alteration for which an approved drug is available in other cancer types (Tier III). Furthermore, 13.1% of tumors exhibited high bTMB, which may predict response to immunotherapy. Overall, 156 (68.1%) patients were eligible for enrolment in clinical trials. CONCLUSION: Liquid biopsy NGS is a viable and valuable approach to guide personalized therapy. The use of blood-based CGP may help identify a larger number of actionable mutations and increase chances of enrolment in clinical trials.

10.
Clin Cancer Res ; 29(23): 4853-4862, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37773629

ABSTRACT

PURPOSE: BRAF mutations are rare in biliary tract cancers (BTC), but are of interest given the recent developments in targeted therapy for BTC. We investigated the clinical outcomes in a cohort of BRAF-mutant advanced BTC treated with first-line chemotherapy. Furthermore, we investigated the genomic landscape of BRAF class I, II, and III mutations in the intrahepatic cholangiocarcinoma (iCCA) subgroup of BTC. EXPERIMENTAL DESIGN: We analyzed two nonoverlapping cohorts. We examined the genomic landscape of BRAF-mutated iCCA in a "genomic cohort" [187 class I, 82 class II, 113 class III BRAF mutants and 8,026 wildtype (WT)]. We also analyzed median progression-free survival (PFS) and overall survival (OS) on first-line chemotherapy in a separate multi-institutional "clinical cohort" of patients with BTC (including iCCA and extrahepatic cholangiocarcinoma (eCCA) and gallbladder cancer; 41 class I, 32 class II+III BRAF mutants and 1,042 WT). RESULTS: In the entire BTC clinical cohort, the median PFS was shorter for class I [HR, 2.11 (P < 0.001)] and class II+III [HR, 1.72 (P = 0.007)] as compared with BRAF WT. OS was also shorter in class I [HR, 2.04 (P = 0.011)] and class II+III [HR, 1.86 (P = 0.002)] as compared with BRAF WT. In the iCCA subgroup, class I alterations were mutually exclusive with FGFR2, IDH1/2, ERBB2, and KRAS mutations. Class II+III mutations appear to be mutually exclusive with FGFR2 and KRAS. CONCLUSIONS: In BTC, all classes of BRAF mutations are associated with a worse prognosis. BRAF mutations occur in 5% of iCCA subgroup and may be mutually exclusive with other targetable mutations.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Cholangiocarcinoma , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Bile Duct Neoplasms/genetics , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Mutation , Bile Ducts, Intrahepatic/pathology , Genomics
11.
JCO Precis Oncol ; 7: e2300093, 2023 09.
Article in English | MEDLINE | ID: mdl-37769224

ABSTRACT

PURPOSE: Copy-number (CN) features reveal the molecular state of cancers and may have predictive and prognostic value in the treatment of cancer. We sought to apply published CN analysis methods to a large pan-cancer data set and characterize ubiquitous CN signatures across tumor types, including potential utility for treatment selection. METHODS: We analyzed the landscape of CN features in 260,333 pan-cancer samples. We examined the association of 10 signatures with genomic alterations and clinical characteristics and trained a machine learning classifier using CN and insertion and deletion features to detect homologous recombination deficiency signature (HRDsig) positivity. Clinical outcomes were assessed using a real-world clinicogenomic database (CGDB) of comprehensive genomic profiling linked to deidentified, electronic health record-derived clinical data. RESULTS: CN signatures were prevalent across cancer types and associated with diverse processes including focal tandem duplications, seismic amplifications, genome-wide loss of heterozygosity (gLOH), and HRD. Our novel HRDsig outperformed gLOH in predicting BRCAness and effectively distinguished biallelic BRCA and homologous recombination-repair wild-type (HRRwt) samples pan-tumor, demonstrating high sensitivity to detect biallelic BRCA in ovarian (93%) and other HRD-associated cancers (80%-87%). Pan-tumor prevalence of HRDsig was 6.4%. HRRwt cases represented a significant fraction of the HRDsig-positive cohort, likely reflecting a population with nongenomic mechanisms of HRD. In ovarian and prostate CGDBs, HRDsig identified more patients than gLOH and had predictive value for poly (ADP-ribose) polymerase inhibitor (PARPi) benefit. CONCLUSION: Tumor CN profiles are informative, revealing diverse processes active in cancer. We describe the landscape of 10 CN signatures in a large pan-cancer cohort, including two associated with HRD. We trained a machine learning-based HRDsig that robustly identified BRCAness and associated with biallelic BRCA pan-tumor, and was predictive of PARPi benefit in real-world ovarian and prostate data sets.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Male , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ribose/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Recombinational DNA Repair , Biomarkers
12.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37586768

ABSTRACT

BACKGROUND: Pembrolizumab is FDA approved for tumors with tumor mutational burden (TMB) of ≥10 mutations/megabase (mut/Mb). However, the response to immune checkpoint inhibitors (ICI) varies significantly among cancer histologies. We describe the landscape of frameshift mutations (FSs) and evaluated their role as a predictive biomarker to ICI in a clinical cohort of patients. METHODS: Comprehensive genomic profiling was performed on a cohort of solid tumor samples examining at least 324 genes. The clinical cohort included patients with metastatic solid malignancies who received ICI monotherapy and had tumor sequencing. Progression-free survival (PFS), overall survival, and objective response rates (ORR) were compared between the groups. RESULTS: We analyzed 246,252 microsatellite stable (MSS) and 4561 samples with microsatellite instability across solid tumors. Histologies were divided into groups according to TMB and FS. MSS distribution: TMB-L (<10 mut/Mb)/FS-A (absent FS) (N=111,065, 45%), TMB-H (≥10 mut/Mb)/FS-A (N=15,313, 6%), TMB-L/FS-P (present ≥1 FS) (N=98,389, 40%) and TMB-H/FS-P (N=21,485, 9%). FSs were predominantly identified in the p53 pathway. In the clinical cohort, 212 patients were included. Groups: TMB-L/FS-A (N=80, 38%), TMB-H/FS-A (N=36, 17%), TMB-L/FS-P (N=57, 27%), TMB-H/FS-P (N=39, 18%). FSs were associated with a higher ORR to ICI, 23.8% vs 12.8% (p=0.02). TMB-L/FS-P had superior median PFS (5.1 months) vs TMB-L/FS-A (3.6 months, p<0.01). The 12-month PFS probability was 34% for TMB-L/FS-P vs 17.1% for TMB-L/FS-A. CONCLUSIONS: FSs are found in 47% of patients with MSS/TMB-L solid tumors in a pan-cancer cohort. FS may complement TMB in predicting immunotherapy responses, particularly for tumors with low TMB.


Subject(s)
Neoplasms, Second Primary , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Frameshift Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Immunotherapy
13.
Oncologist ; 28(8): 691-698, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37354528

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) represents an aggressive disease with median overall survival (OS) of less than 1 year in the front-line setting. FOLFIRINOX and gemcitabine and paclitaxel (GP) are standard of care options for these patients; however, optimal selection of therapy is challenging. METHODS: Comprehensive genomic profiling was performed on 8358 PC patients. Outcomes were available for 1149 metastatic PC patients treated with 1L FOLFIRINOX or GP. A scar-based measure of HRD was called using a machine learning-based algorithm incorporating copy number and indel features. RESULTS: A scar-based HRD signature (HRDsig) was identified in 9% of patients. HRDsig significantly co-occurred with biallelic alterations in BRCA1/2, PALB2, BARD1, and RAD51C/D, but encompassed a larger population than that defined by BRCA1/BRCA2/PALB2 (9% vs. 6%). HRDsig was predictive of 1L FOLFIRNOX chemotherapy benefit with doubled OS relative to gemcitabine and paclitaxel (GP) (rwOS aHR 0.37 [0.22-0.62]), including 25% of the population with long-term (2 year+) survival in a real-world cohort of patients. Less benefit from FOLFIRINOX was observed in the HRDsig(-) population. Predictive value was seen in both the BRCA1/2/PALB2 mutant and wildtype populations, suggesting additional value to mutational profiling. CONCLUSION: A scar-based HRD biomarker was identified in a significant fraction of PC patients and is predictive of FOLFIRINOX benefit. Incorporating a biomarker like HRDsig could identify the right patients for platinum chemotherapy and potentially reduce FOLFIRINOX use by over 40%, minimizing toxicities with similar survival outcomes. Confirmatory studies should be performed.


Subject(s)
Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/genetics , Gemcitabine , Cicatrix/chemically induced , Cicatrix/drug therapy , Cicatrix/pathology , Retrospective Studies , BRCA2 Protein/genetics , Fluorouracil , Leucovorin , Deoxycytidine , Paclitaxel , Albumins , Pancreatic Neoplasms
14.
Genome Med ; 15(1): 28, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101291

ABSTRACT

BACKGROUND: Mutations in the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), encoded by the PIK3CA gene, cause dysregulation of the PI3K pathway in 35-40% of patients with HR+/HER2- breast cancer. Preclinically, cancer cells harboring double or multiple PIK3CA mutations (mut) elicit hyperactivation of the PI3K pathway leading to enhanced sensitivity to p110α inhibitors. METHODS: To understand the role of multiple PIK3CAmut in predicting response to p110α inhibition, we estimated the clonality of multiple PIK3CAmut in circulating tumor DNA (ctDNA) from patients with HR+/HER2- metastatic breast cancer enrolled to a prospectively registered clinical trial of fulvestrant ± taselisib, and analyzed the subgroups against co-altered genes, pathways, and outcomes. RESULTS: ctDNA samples with clonal multiple PIK3CAmut had fewer co-alterations in receptor tyrosine kinase (RTK) or non-PIK3CA PI3K pathway genes compared to samples with subclonal multiple PIK3CAmut indicating a strong reliance on the PI3K pathway. This was validated in an independent cohort of breast cancer tumor specimens that underwent comprehensive genomic profiling. Furthermore, patients whose ctDNA harbored clonal multiple PIK3CAmut exhibited a significantly higher response rate and longer progression-free survival vs subclonal multiple PIK3CAmut. CONCLUSIONS: Our study establishes clonal multiple PIK3CAmut as an important molecular determinant of response to p110α inhibition and provides rationale for further clinical investigation of p110α inhibitors alone or with rationally-selected therapies in breast cancer and potentially other solid tumor types.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/therapeutic use , Phosphatidylinositol 3-Kinases/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics
15.
Oncologist ; 28(4): 319-326, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36866462

ABSTRACT

BACKGROUND: In 2020, pembrolizumab was approved as a therapy for triple-negative breast cancer (TNBC) with the companion diagnostic DAKO 22C3 programmed death ligand-1 (PD-L1) immunohistochemistry assay. The study aimed to determine the landscape of PD-L1 expression as detected by the DAKO 22C3 PD-L1 assay in breast cancer subtypes and compare the clinicopathologic and genomic characteristics of PD-L1 positive and negative TNBC. METHODS: PD-L1 expression using the DAKO 22C3 antibody was scored using a combined positive score (CPS) and positive status was defined as CPS ≥10. Comprehensive genomic profiling was performed using the FoundationOne CDx assay. RESULTS: Of the 396 BC patients stained with DAKO 22C3, the majority were HR+/HER2- and TNBC (42% and 36%, respectively). Median PD-L1 expression and frequency of CPS ≥10 was highest in TNBC cases (median: 7.5, 50% CPS ≥10) and lowest in the HR+/HER2- group (median: 1.0, 15.5% CPS ≥10) (P < .0001). A comparison of PD-L1 positive and PD-L1 negative TNBC demonstrated no significant differences in clinicopathologic or genomic characteristics. TNBC tissue samples from the breast did have an observed enrichment for PD-L1 positivity compared to TNBC tissue samples from a metastatic site (57% vs. 44%), but this was not statistically significant (P = .1766). In the HR+/HER2- group, genomic alterations in TP53, CREBBP, and CCNE1 were more prevalent and genomic loss of heterozygosity was higher in the PD-L1(+) group compared to the PD-L1(-) group. CONCLUSIONS: The subtypes of breast cancer have distinct patterns of PD-L1 expression, supporting that further research of immunotherapies may include specific evaluation of optimum cutoffs for non-TNBC patients. In TNBC, PD-L1 positivity is not associated with other clinicopathologic or genomic features and should be integrated into future studies of immunotherapy efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Triple Negative Breast Neoplasms , Humans , Immunohistochemistry , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
16.
Clin Cancer Res ; 29(6): 1125-1136, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36595567

ABSTRACT

PURPOSE: To comprehensively characterize tissue-specific and molecular subclasses of multiple PIK3CA (multi-PIK3CA) mutations and assess their impact on potential therapeutic outcomes. EXPERIMENTAL DESIGN: We profiled a pan-cancer cohort comprised of 352,392 samples across 66 tumor types using a targeted hybrid capture-based next-generation sequencing panel covering at least 324 cancer-related genes. Molecularly defined subgroups, allelic configuration, clonality, and mutational signatures were identified and tested for association with PI3K inhibitor therapeutic response. RESULTS: Multi-PIK3CA mutations are found in 11% of all PIK3CA-mutant tumors, including 9% of low tumor mutational burden (TMB) PIK3CA-mutant tumors, and are enriched in breast and gynecologic cancers. Multi-PIK3CA mutations are frequently clonal and in cis on the same allele and occur at characteristic positions across tumor types. These mutations tend to be mutually exclusive of mutations in other driver genes, and of genes in the PI3K pathway. Among PIK3CA-mutant tumors with a high TMB, 18% are multi-PIK3CA mutant and often harbor an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational signature. Despite large differences in specific allele combinations comprising multi-PIK3CA mutant tumors, especially across cancer types, patients with different classes of multi-PIK3CA mutant estrogen receptor-positive, HER2-negative breast cancers respond similarly to PI3K inhibition. CONCLUSIONS: Our pan-tumor study provides biological insights into the genetic heterogeneity and tissue specificities of multi-PIK3CA mutations, with potential clinical utility to guide PI3K inhibition strategies.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Female , Phosphatidylinositol 3-Kinases/genetics , Genetic Heterogeneity , Breast Neoplasms/pathology , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics
17.
Urol Oncol ; 41(2): 109.e15-109.e22, 2023 02.
Article in English | MEDLINE | ID: mdl-36443178

ABSTRACT

BACKGROUND: When urothelial carcinoma of the bladder (UCB) presents or progresses to chemo-refractory metastatic disease, the search for new therapeutic targets is paramount. Targeting protein arginine methyltransferase 5 accumulation in tumors with methylthioadenosine phosphorylase (MTAP) genomic loss has been proposed as a new anti-tumor strategy. We evaluated the incidence of patients with MTAP loss and correlate to treatment-guiding targets and biomarkers. METHODS: Two thousand six hundred eighty-three cases of advanced UCB underwent hybrid-capture based comprehensive genomic profiling using the FDA-approved F1CDx assay to evaluate all classes of genomic alterations (GA) among 324 genes. Tumor mutational burden was determined on at least 0.8 Mbp of sequenced DNA and microsatellite instability was determined on at least 95 loci. RESULTS: 650 (24%) of UCB featured MTAP loss mutations (MTAP-). The gene and age distributions were similar in MTAP intact (MTAP+) and MTAP- UCB. MTAP- UCB contained higher GA/tumor frequency than MTAP+ UCB likely reflecting the frequent co-deletions of cyclin-dependent kinase inhibitor 2A/B. Of potential therapeutic targets, fibroblast growth factor receptor 3, and phosphatase and tensin homolog GA were more frequent in MTAP- UCB. In contrast, biomarkers of immunotherapy response, including higher frequencies of high tumor mutational burden and high programmed death-ligand 1 IHC staining, were observed in the MTAP+ UCB. CONCLUSIONS: When compared with MTAP+ UCB, MTAP- UCB differs in genomic signatures including an increase in potentially targetable alterations but a lower frequency of immunotherapy drug biomarkers. Thus, the genomic landscape in MTAP- UCB may play a role in the design of clinical trials incorporating combination treatment strategies when targeting protein arginine methyltransferase 5 in MTAP- tumors.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Synthetic Lethal Mutations , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Genomics
18.
Clin Cancer Res ; 29(6): 1056-1067, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36321996

ABSTRACT

PURPOSE: Alpelisib is a PI3K alpha (PI3Kα)-selective inhibitor approved for the treatment of hormone receptor-positive/HER2-negative (HR+/HER2-) PIK3CA-mutated advanced breast cancer (ABC) based on the SOLAR-1 trial, which defined 11 substitutions in exons 7, 9, and 20 in PIK3CA (SOLAR1m). We report alpelisib effectiveness for ABC harboring SOLAR1m, as well as other pathogenic PIK3CA mutations (OTHERm) using comprehensive genomic profiling (CGP). EXPERIMENTAL DESIGN: A total of 33,977 tissue and 1,587 liquid biopsies were analyzed using hybrid capture-based CGP covering the entire coding sequence of PIK3CA. Clinical characteristics and treatment history were available for 10,750 patients with ABC in the deidentified Flatiron Health-Foundation Medicine clinico-genomic database (FH-FMI CGDB). RESULTS: PIK3CAm were detected in 11,767/33,977 (35%) of tissue biopsies, including 2,300 (7%) samples with OTHERm and no SOLAR1m. Liquid biopsy had 77% sensitivity detecting PIK3CAm, increasing to 95% with circulating tumor DNA fraction ≥2%. In patients with HR+/HER2- ABC and PIK3CAm receiving alpelisib/fulvestrant (ALP+FUL; n = 182) or fulvestrant alone (FUL; n = 119), median real-world progression-free survival (rwPFS) was 5.9 months on ALP+FUL [95% confidence interval (CI): 5.1-7.4] versus 3.1 months on FUL (95% CI: 2.7-3.7; P < 0.0001). In patients with OTHERm, median rwPFS was 4.0 months on ALP+FUL (95% CI: 2.8-10.1) versus 2.5 months on FUL (95% CI: 2.2-3.7; P = 0.0054). CONCLUSIONS: CGP detects diverse PIK3CAm in a greater number of patients with ABC than PCR hotspot testing; 20% of patients with PIK3CAm do not have SOLAR1m. These patients may derive benefit from alpelisib. See related commentary by Tau and Miller, p. 989.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Humans , Female , Fulvestrant/adverse effects , Receptor, ErbB-2/genetics , Receptor, ErbB-2/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics , Biology
19.
NPJ Precis Oncol ; 6(1): 91, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494601

ABSTRACT

Recent clinical development of KRAS inhibitors has heightened interest in the genomic landscape of KRAS-altered cancers. We performed a pan-cancer analysis of KRAS-altered samples from 426,706 adult patients with solid or hematologic malignancies using comprehensive genomic profiling; additional analyses included 62,369 liquid biopsy and 7241 pediatric samples. 23% of adult pan-cancer samples had KRAS alterations; 88% were mutations, most commonly G12D/G12V/G12C/G13D/G12R, and prevalence was similar in liquid biopsies. Co-alteration landscapes were largely similar across KRAS mutations but distinct from KRAS wild-type, though differences were observed in some tumor types for tumor mutational burden, PD-L1 expression, microsatellite instability, and other mutational signatures. Prognosis of KRAS-mutant versus other genomic cohorts of lung, pancreatic, and colorectal cancer were assessed using a real-world clinicogenomic database. As specific KRAS inhibitors and combination therapeutic strategies are being developed, genomic profiling to understand co-alterations and other biomarkers that may modulate response to targeted or immunotherapies will be imperative.

20.
Nat Commun ; 13(1): 7495, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470901

ABSTRACT

Pathological and genomic profiling have transformed breast cancer care by matching patients to targeted treatments. However, tumors evolve and evade therapeutic interventions often through the acquisition of genomic mutations. Here we examine patients profiled with tissue (TBx) and liquid biopsy (LBx) as part of routine clinical care, to characterize the tumor evolutionary landscape and identify potential vulnerabilities in the relapsed setting. Real-world evidence demonstrates that LBx is utilized later in care and identifies associations with intervening therapy. While driver events are frequently shared, acquired LBx alterations are detected in a majority of patients, with the highest frequency in ER+ disease and in patients with longer biopsy intervals. Acquired mutations are often polyclonal and present at lower allelic fractions, suggesting multi-clonal convergent evolution. In addition to well-characterized resistance mutations (e.g., ESR1, NF1, RB1, ERBB2), we observe a diversity of rarer but potentially targetable mutations (e.g., PIK3CA, HRAS/NRAS/KRAS, FGFR1/2/3, BRAF) and fusions (e.g., FGFR1/2, ERBB2, RET), as well as BRCA1/2 reversions through a variety of mechanisms, including splice alterations and structural deletions. This study provides insights on treatment and selection-driven tumor evolution and identifies potential combinatorial treatment options in advanced breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Mutation , Liquid Biopsy , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...