Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
2.
Plants (Basel) ; 12(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38140465

ABSTRACT

The phenomenon of heterochrony, or shifts in the relative timing of ontogenetic events, is important for understanding many aspects of plant evolution, including applied issues such as crop yield. In this paper, we review heterochronic shifts in the evolution of an important floral organ, the carpel. The carpels, being ovule-bearing organs, facilitate fertilisation, seed, and fruit formation. It is the carpel that provides the key character of flowering plants, angiospermy. In many angiosperms, a carpel has two zones: proximal ascidiate and distal plicate. When carpels are free (apocarpous gynoecium), the plicate zone has a ventral slit where carpel margins meet and fuse during ontogeny; the ascidiate zone is sac-like from inception and has no ventral slit. When carpels are united in a syncarpous gynoecium, a synascidiate zone has as many locules as carpels, whereas a symplicate zone is unilocular, at least early in ontogeny. In ontogeny, either the (syn)ascidiate or (sym)plicate zone is first to initiate. The two developmental patterns are called early and late peltation, respectively. In extreme cases, either the (sym)plicate or (syn)ascidiate zone is completely lacking. Here, we discuss the diversity of carpel structure and development in a well-defined clade of angiosperms, the monocotyledons. We conclude that the common ancestor of monocots had carpels with both zones and late peltation. This result was found irrespective of the use of the plastid or nuclear phylogeny. Early peltation generally correlates with ovules belonging to the (syn)ascidiate zone, whereas late peltation is found mostly in monocots with a fertile (sym)plicate zone.

3.
Front Cell Dev Biol ; 10: 868352, 2022.
Article in English | MEDLINE | ID: mdl-35573671

ABSTRACT

Molecular phylogenetic analyses have revealed a superclade of mesangiosperms with five extant lineages: monocots, eudicots, magnoliids, Ceratophyllum and Chloranthaceae. Both Ceratophyllum and Chloranthaceae are ancient lineages with a long fossil record; their precise placement within mesangiosperms is uncertain. Morphological studies have suggested that they form a clade together with some Cretaceous fossils, including Canrightia, Montsechia and Pseudoasterophyllites. Apart from Canrightia, members of this clade share unilocular gynoecia commonly interpreted as monomerous with ascidiate carpels. Alternatively, the gynoecium of Ceratophyllum has also been interpreted as syncarpous with a single fertile carpel (pseudomonomerous). We investigate patterns of morphological, anatomical and developmental variation in gynoecia of three Ceratophyllum species to explore the controversial interpretation of its gynoecium as either monomerous or pseudomonomerous. We use an angiosperm-wide morphological data set and contrasting tree topologies to estimate the ancestral gynoecium type in both Ceratophyllum and mesangiosperms. Gynoecia of all three Ceratophyllum species possess a small (sometimes vestigial) glandular appendage on the abaxial side and an occasionally bifurcating apex. The ovary is usually unilocular with two procambium strands, but sometimes bilocular and/or with three strands in C. demersum. None of the possible phylogenetic placements strongly suggest apocarpy in the stem lineage of Ceratophyllum. Rescoring Ceratophyllum as having two united carpels affects broader-scale reconstructions of the ancestral gynoecium in mesangiosperms. Our interpretation of the glandular appendage as a tepal or staminode homologue makes the Ceratophyllum ovary inferior, thus resembling (semi)inferior ovaries of most Chloranthaceae and potentially related fossils Canrightia and Zlatkocarpus. The entire structure of the flower of Ceratophyllum suggests strong reduction following a long and complex evolutionary history. The widely accepted notion that apocarpy is ancestral in mesangiosperms (and angiosperms) lacks robust support, regardless of which modes of carpel fusion are considered. Our study highlights the crucial importance of incorporating fossils into large-scale analyses to understand character evolution.

4.
J Exp Bot ; 73(14): 4637-4661, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35512454

ABSTRACT

The grass family (Poaceae) includes cereal crops that provide a key food source for the human population. The food industry uses the starch deposited in the cereal grain, which develops directly from the gynoecium. Morphological interpretation of the grass gynoecium remains controversial. We re-examine earlier hypotheses and studies of morphology and development in the context of more recent analyses of grass phylogenetics and developmental genetics. Taken in isolation, data on gynoecium development in bistigmatic grasses do not contradict its interpretation as a solitary ascidiate carpel. Nevertheless, in the context of other data, this interpretation is untenable. Broad comparative analysis in a modern phylogenetic context clearly demonstrates that the grass gynoecium is pseudomonomerous. A bistigmatic grass gynoecium has two sterile carpels, each producing a stigma, and a fertile carpel that lacks a stigma. To date, studies of grass developmental genetics and developmental morphology have failed to fully demonstrate the composite nature of the grass gynoecium be-cause its complex evolutionary history is hidden by extreme organ integration. It is problematic to interpret the gynoecium of grasses in terms of normal angiosperm gynoecium typology. Even the concept of a carpel becomes misleading in grasses; instead, we recommend the term pistil for descriptive purposes.


Subject(s)
Magnoliopsida , Poaceae , Biological Evolution , Flowers , Humans , Magnoliopsida/anatomy & histology , Phylogeny , Poaceae/genetics
5.
Am J Bot ; 109(4): 500-513, 2022 04.
Article in English | MEDLINE | ID: mdl-35244214

ABSTRACT

PREMISE: The sporoderm of seed-plant pollen grains typically has apertures in which the outer sporopollenin-bearing layer is relatively sparse. The apertures allow regulation of the internal volume of the pollen grain during desiccation and rehydration (harmomegathy) and also serve as sites of pollen germination. A small fraction of angiosperms undergo pollination in water or at the water surface, where desiccation is unlikely. Their pollen grains commonly lack apertures, though with some notable exceptions. We tested a hypothesis that in some angiosperm aquatics that inhabit water of unstable salinity, the pollen apertures accommodate osmotic effects that occur during pollination in such conditions. METHODS: Pollen grains of the tepaloid clade of the monocot order Alismatales, which contains ecologically diverse aquatic and marshy plants, were examined using light microscopy and scanning electron microscopy. We used Ruppia as a model to test pollen grain response in water of various salinities. Pollen aperture evolution was also analyzed using molecular tree topologies. RESULTS: Phylogenetic optimizations demonstrated an evolutionary loss and two subsequent regains of the aperturate condition in the tepaloid clade of Alismatales. Both of the taxa that have reverted to aperturate pollen (Ruppia, Ruppiaceae; Althenia, Potamogetonaceae) are adapted to changeable water salinity. Direct experiments with Ruppia showed that the pollen apertures have a role in a harmomegathic response to differences in water salinity. CONCLUSIONS: Our results showed that the inferred regain of pollen apertures represents an adaptation to changeable water salinity. We invoke a loss-and-regain scenario, prompting questions that are testable using developmental genetics and plant physiology.


Subject(s)
Magnoliopsida , Salinity , Microscopy, Electron, Scanning , Phylogeny , Pollen/physiology , Water
6.
Plants (Basel) ; 11(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35161391

ABSTRACT

Lotus dorycnium s.l. is a complex of taxa traditionally regarded as members of Dorycnium. It has a wide Mediterranean range, extending in the north to Central and Eastern Europe, and in the east to the Crimea, the Caucasus, and the Western Caspian region. Molecular phylogenetic data support placement of the L. dorycnium complex in the genus Lotus. The present study investigated the phylogeny, phylogeography and morphological variability of the L. dorycnium complex across its distribution range to reveal the main trends in genetic and morphological differentiation in this group. The results of the morphological analyses demonstrated some degree of differentiation, with L. d. ssp. herbaceus, ssp. gracilis, and ssp. anatolicus more or less well defined, whereas ssp. dorycnium, ssp. germanicus, and ssp. haussknechtii can be hardly distinguished from each other using morphology. Analyses of the L. dorycnium complex based on nrITS revealed a tendency towards a geographic differentiation into Western, Eastern, and Turkish groups. Phylogenetic and phylogeographic analyses of the same set of specimens using concatenated plastid markers trnL-F, rps16, and psbA-trnH demonstrated a low resolution between the L. dorycnium complex and L. hirsutus, as well as among the taxa within the L. dorycnium complex, which can be interpreted as evidence of an incomplete lineage sorting or hybridization. The evolutionary processes responsible for incongruence in phylogenetic signals between plastid and nuclear sequences of the morphologically well-defined species L. dorycnium and L. hirsutus were most likely localized in the Eastern Mediterranean. A possibility of rare gene exchange between the L. dorycnium complex and the group of L. graecus is revealed for the first time.

7.
Front Plant Sci ; 13: 1081981, 2022.
Article in English | MEDLINE | ID: mdl-36714755

ABSTRACT

Introduction: Understanding the complex inflorescence architecture and developmental morphology of common buckwheat (Fagopyrum esculentum) is crucial for crop yield. However, most published descriptions of early flower and inflorescence development in Polygonaceae are based on light microscopy and often documented by line drawings. In Fagopyrum and many other Polygonaceae, an important inflorescence module is the thyrse, in which the primary axis never terminates in a flower and lateral cymes (monochasia) produce successively developing flowers of several orders. Each flower of a cyme is enclosed together with the next-order flower by a bilobed sheathing bract-like structure of controversial morphological nature. Methods: We explored patterns of flower structure and arrangement in buckwheat and its wild relatives, using comparative morphology, scanning electron microscopy and X-ray microtomography. Results: Our data support interpretation of the sheathing bract as two congenitally fused phyllomes (prophylls), one of which subtends a next-order flower. In tepal-like bract, a homeotic mutant of F. esculentum, the bilobed sheathing bract-like organ acquires tepal-like features and is sometimes replaced by two distinct phyllomes. Wild representatives of F. esculentum (ssp. ancestrale) and most cultivars of common buckwheat possess an indeterminate growth type with lateral thyrses produced successively on the primary inflorescence axis until cessation of growth. In contrast, determinate cultivars of F. esculentum develop a terminal thyrse after producing lateral thyrses. In contrast to F. esculentum, the occurrence of a terminal thyrse does not guarantee a determinate growth pattern in F. tataricum. The number of lateral thyrses produced before the terminal thyrse on the main axis of F. tataricum varies from zero to c. 19. Discussion: The nine stages of early flower development formally recognized here and our outline of basic terminology will facilitate more standardized and readily comparable descriptions in subsequent research on buckwheat biology. Non-trivial relative arrangements of tepals and bracteoles in Fagopyrum and some other Polygonaceae require investigation using refined approaches to mathematical modelling of flower development. Our data on inflorescence morphology and development suggest contrasting evolutionary patterns in the two main cultivated species of buckwheat, F. esculentum and F. tataricum. The genus Fagopyrum offers an excellent opportunity for evo-devo studies related to inflorescence architecture.

8.
Front Plant Sci ; 12: 714711, 2021.
Article in English | MEDLINE | ID: mdl-34899769

ABSTRACT

Naturally occurring mutants whose phenotype recapitulates the changes that distinguish closely related species are of special interest from the evolutionary point of view. They can give a key about the genetic control of the changes that led to speciation. In this study, we described lepidium-like (lel), a naturally occurring variety of an allotetraploid species Capsella bursa-pastoris that is characterized by the typical loss of all four petals. In some cases, one or two basal flowers in the raceme had one or two small petals. The number and structure of other floral organs are not affected. Our study of flower development in the mutant showed that once initiated, petals either cease further development and cannot be traced in anthetic flowers or sometimes develop to various degrees. lel plants showed an earlier beginning of floral organ initiation and delayed petal initiation compared to the wild-type plants. lel phenotype has a wide geographical distribution, being found at the northern extremity of the species range as well as in the central part. The genetic analysis of inheritance demonstrated that lel phenotype is controlled by two independent loci. While the flower in the family Cruciferae generally has a very stable structure (i.e., four sepals, four petals, six stamens, and two carpels), several deviations from this ground plan are known, in particular in the genus Lepidium, C. bursa-pastoris is an emerging model for the study of polyploidy (which is also very widespread in Cruciferae); the identification and characterization of the apetalous mutant lays a foundation for further research of morphological evolution in polyploids.

10.
PeerJ ; 9: e10935, 2021.
Article in English | MEDLINE | ID: mdl-33732546

ABSTRACT

BACKGROUND: The extreme southwest of Australia is a biodiversity hotspot region that has a Mediterranean-type climate and numerous endemic plant and animal species, many of which remain to be properly delimited. We refine species limits in Anarthria, a Western Australian endemic genus characterised by the occurrence of the greatest number of plesiomorphic character states in the restiid clade of Poales. In contrast to many other groups of wind-pollinated Australian Poales, Anarthria was traditionally viewed as having well-established species limits. All six currently recognised species, which are conspicuous members of some Western Australian plant communities, were described in the first half of the 19th century. They are traditionally distinguished from each other mainly using quantitative characters. METHODS: We examined extensive existing herbarium specimens and made new collections of Anarthria in nature. Scanning electron microscopy and light microscopy were used to study leaf micromorphology. Molecular diversity of Anarthria was examined using a plastid (trnL-F) and a low-copy nuclear marker (at103). This is the first study of species-level molecular diversity in the restiid clade using a nuclear marker. RESULTS: Material historically classified as Anarthria gracilis R.Br. actually belongs to three distinct species, A. gracilis s.str., A. grandiflora Nees and A. dioica (Steud.) C.I.Fomichev, each of which forms a well-supported clade in phylogenetic analyses. Both segregate species were described in the first half of the 19th century but not recognised as such in subsequent taxonomic accounts. Anarthria dioica was first collected in 1826, then wrongly interpreted as a species of Juncus (Juncaceae) and described as Juncus dioicus. We provide a formal transfer of the name to Anarthria and for the first time report its clear and qualitative diagnostic characters: an extremely short leaf ligule and distinctive pattern of leaf epidermal micromorphology. A long ligule is present in A. gracilis s.str. and A. grandiflora. These species differ from each other in leaf lamina morphology and anatomy and have mostly non-overlapping distribution ranges. The narrower definition of species provides a basis for future phylogeographic analyses in Anarthria. Our study highlights a need for more extensive use of nuclear DNA markers in Restionaceae. The use of the low copy nuclear marker at103 allowed a clade comprising all three ligulate species of Anarthria to be recognised. The ligule character is used here for the first time in the taxonomy of Anarthria and merits special attention in studies of other restiids. In general, our study uncovered a superficially hidden but, in reality, conspicuous diversity in a common group of wind-pollinated plants in the southwest of Western Australia.

11.
Plants (Basel) ; 10(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525693

ABSTRACT

The Mediterranean region is a center of species and genetic diversity of many plant groups, which served as a source of recolonization of temperate regions of Eurasia in Holocene. We investigate the evolutionary history of species currently classified in Lotus sect. Bonjeanea in the context of the evolution of the genus Lotus as a whole, using phylogenetic, phylogeographic and dating analyses. Of three species of the section, L. rectus and L. hirsutus have wide Mediterranean distribution while L. strictus has a disjunctive range in Bulgaria, Turkey, Armenia, Eastern Kazakhstan, and adjacent parts of Russia and China. We used entire nuclear ribosomal ITS1-5.8S-ITS2 region (nrITS) and a plastid dataset (rps16 and trnL-F) to reconstruct phylogenetic relationships within Lotus with an extended representation of Bonjeanea group. We analyzed the phylogeographic patterns within each species based on the plastid dataset. For divergence time estimation, the nrITS dataset was analyzed. Our results confirmed the non-monophyletic nature of the section Bonjeanea. They indicate that Lotus is likely to have diverged about 15.87 (9.99-19.81) million years ago (Ma), which is much older than an earlier estimate of ca. 5.54 Ma. Estimated divergence ages within L. strictus, L. rectus, and L. hisrutus (6.1, 4.94, and 4.16 Ma, respectively) well predate the onset of the current type of Mediterranean climate. Our data suggest that relatively ancient geological events and/or climatic changes apparently played roles in early diversification of Lotus and its major clades, as well as in formation of phylogeographic patterns, in at least some species.

12.
Front Plant Sci ; 12: 813915, 2021.
Article in English | MEDLINE | ID: mdl-35154210

ABSTRACT

The family Rapateaceae represents an early-divergent lineage of Poales with biotically pollinated showy flowers. We investigate developmental morphology and anatomy in all three subfamilies and five tribes of Rapateaceae to distinguish between contrasting hypotheses on spikelet morphology and to address questions on the presence of nectaries and gynoecium structure. We support an interpretation of the partial inflorescence (commonly termed spikelet), as a uniaxial system composed of a terminal flower and numerous empty phyllomes. A terminal flower in an inflorescence unit is an autapomorphic feature of Rapateaceae. The gynoecium consists of synascidiate, symplicate, and usually asymplicate zones, with gynoecium formation encompassing congenital and often also postgenital fusions between carpels. Species of Rapateaceae differ in the relative lengths of the gynoecial zones, the presence or absence of postgenital fusion between the carpels and placentation in the ascidiate or plicate carpel zones. In contrast with previous reports, septal nectaries are lacking in all species. The bird-pollinated tribe Schoenocephalieae is characterized by congenital syncarpy; it displays an unusual type of gynoecial (non-septal) nectary represented by a secretory epidermis at the gynoecium base.

13.
PeerJ ; 8: e10205, 2020.
Article in English | MEDLINE | ID: mdl-33150089

ABSTRACT

The monocot family Triuridaceae is a morphological misfit with respect to several traits of floral morphology, including the uniformly apocarpous polymerous gynoecium and the famous inside-out flowers of Lacandonia. Although Triuridaceae are crucially important for understanding the floral evolution of Pandanales and angiosperms in general, significant knowledge gaps exist which hamper adequate morphological analysis of flowers in this family. The scarcity of morphological data is also reflected in numerous taxonomic inconsistencies. Here we provide a comprehensive study of reproductive organs of four species of Sciaphila occurring in Vietnam (S. arfakiana, S. densiflora, S. nana and S. stellata) including the first investigation of early floral development and gynoecium phyllotaxis. Our observations are mainly based on SEM images. We confirm the perianth (studied in male flowers) to be two-whorled and report a rare sequence of initiation of perianth parts: the outer tepals show a late congenital fusion, as their free lobes appear before the common perianth tube, whereas the inner tepals show an early congenital fusion, with their free lobes initiating on the tube rim. We interpret the stamen appendages as basal adaxial outgrowths of the stamen filaments. We discuss the number of thecae and locules in anthers of Sciaphila, and conclude that 3- and 4-, but not 2-locular anthers are characteristic of this genus. We describe the carpels as consisting of both ascidiate and plicate zones, the former being extremely short and completely obscured by anthesis. The single ovule is attached in the cross-zone. The style is non-plicate. We analyze gynoecium phyllotaxis by estimating its contact parastichies, and by investigating the number and arrangement of the outermost carpels. The carpel arrangement in a given gynoecium is a result of the balance between whorled and irregular (but not spiral) phyllotaxis. We recognize the following figures of gynoecium merism: 6, 9, 10, 10.5, 11 and 12, with the prevalence of those divisible by three. We discuss our results in the light of general diversity of floral structure of monocots. Our data allow to clarify several issues in taxonomy of Asian Sciaphila and indicate directions of further studies. We report a significant range extension for S. densiflora, which is newly recorded for the flora of Vietnam. We describe for the first time staminodes in female flowers of this species. We reveal two distinct morphs of S. nana in Vietnam. We highlight the need of a thorough revision of S. secundiflora species complex in order to verify the species boundaries and, in particular, to test the identity of the Vietnamese S. stellata.

14.
Plants (Basel) ; 9(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114293

ABSTRACT

Eriocaulaceae (Poales) differ from potentially related Xyridaceae in pattern of floral organ arrangement relative to subtending bract (with median sepal adaxial). Some Eriocaulaceae possess reduced and non-trimerous perianth, but developmental data are insufficient. We conducted a SEM investigation of flower development in three species of Eriocaulon to understand whether organ number and arrangement are stable in E. redactum, a species with a highly reduced calyx and reportedly missing corolla. Early flower development is similar in all three species. Male and female flowers are indistinguishable at early stages. Despite earlier reports, both floral types uniformly possess three congenitally united sepals and three petals in E. redactum. Petals and inner stamens develop from common primordia. We assume that scanning electron microscopy should be used in taxonomic accounts of Eriocaulon to assess organ number and arrangement. Two types of corolla reduction are found in Eriocaulaceae: suppression and complete loss of petals. Common petal-stamen primordia in Eriocaulon do not co-occur with delayed receptacle expansion as in other monocots but are associated with retarded petal growth. The 'reverse' flower orientation of Eriocaulon is probably due to strictly transversal lateral sepals. Gynoecium development indicates similarities of Eriocaulaceae with restiids and graminids rather than with Xyridaceae.

15.
Front Cell Dev Biol ; 8: 303, 2020.
Article in English | MEDLINE | ID: mdl-32509775

ABSTRACT

European species of Nuphar are amongthe most accessible members of the basal angiosperm grade, but detailed studies using scanning electron microscopy are lacking. We provide such data and discuss them in the evolutionary context. Dorsiventral monopodial rhizomes of Nuphar bear foliage leaves and non-axillary reproductive units (RUs) arranged in a Fibonacci spiral. The direction of the phyllotaxis spiral is established in seedlings apparently environmentally and maintained through all rhizome branching events. The RUs can be located on dorsal, ventral or lateral side of the rhizome. There is no seasonality in timing of their initiation. The RUs usually form pairs in positions N and N + 2 along the ontogenetic spiral. New rhizomes appear on lateral sides of the mother rhizome. A lateral rhizome is subtended by a foliage leaf (N) and is accompanied by a RU in the position N + 2. We hypothesize a two-step process of regulation of RU/branch initiation, with the second step possibly involving environmental factors such as gravitropism. Each RU has a short stalk, 1-2 scale-like phyllomes and a long-pedicellate flower. We support a theory that the flower is lateral to the RU axis. The five sepals initiate successively and form two whorls as 3 + 2. The sepal arrangement is not 'intermediate' between whorled and spiral. Mechanisms of phyllotaxis establishment differ between flowers and lateral rhizomes. Petal, stamen and carpel numbers are not precisely fixed. Petals are smaller than sepals and form a whorl. They appear first in the sectors of the outer whorl sepals. The stamen arrangement is whorled to chaotic. The merism of the androecium tends to be the same as in the corolla. Flowers with odd numbers of stamen orthostichies are found. These are interpreted as having a non-integer merism of the androecium (e.g., 14.5). Carpels form a whorl in N. lutea and normally alternate with inner whorl stamens. Sterile second whorl carpel(s) are found in some flowers of N. pumila.

17.
J Plant Res ; 131(6): 925-943, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30032395

ABSTRACT

The late Eocene ambers provide plethora of animal and plant fossils including well-preserved angiosperm flowers from the Baltic amber. The Rovno amber from NW Ukraine resembles in many aspects the Baltic amber; however, only fossilized animals and some bryophytes have yet been studied from the Rovno amber. We provide the first detailed description of an angiosperm flower from Rovno amber. The flower is staminate with conspicuous hypanthium, double pentamerous perianth and whorled androecium of 24 stamens much longer than the petals. Sepals are sparsely pubescent and petals are densely hirsute outside. The fossil shares important features with extant members of Prunus subgen. Padus s. l. (incl. Laurocerasus, Pygeum and Maddenia), especially with its evergreen paleotropical species. It is described here as a new species Prunus hirsutipetala D.D.Sokoloff, Remizowa et Nuraliev. Our study provides the first convincing record of fossil flowers of Rosaceae from Eocene of Europe and the earliest fossil flower of Prunus outside North America. Our record of a plant resembling extant tropical species supports palaeoentomological evidences for warm winters in northwestern Ukraine during the late Eocene, as well as suggesting a more significant role of tropical insects in Rovno amber than inferred from Baltic amber.


Subject(s)
Flowers/anatomy & histology , Fossils/anatomy & histology , Prunus/anatomy & histology , Amber
19.
Am J Bot ; 103(12): 2028-2057, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27919924

ABSTRACT

PREMISE OF THE STUDY: Revealing the relative roles of gradual and abrupt transformations of morphological characters is an important topic of evolutionary biology. Gynoecia apparently consisting of one carpel have evolved from pluricarpellate syncarpous gynoecia in several angiosperm clades. The process of reduction can involve intermediate stages, with one fertile and one or more sterile carpels (pseudomonomery). The possible origin of monomery directly via an abrupt change of gynoecium merism has been a matter of dispute. We explore the nature of gynoecium reduction in a clade of Araliaceae. METHODS: The anatomy and development of unilocular gynoecia are investigated using light and scanning electron microscopy in two members of Polyscias subg. Arthrophyllum. Gynoecium diversity in the genus is discussed in a phylogenetic framework. KEY RESULTS: Unilocular gynoecia with one fertile ovule have evolved at least four times in Polyscias, including one newly discovered case. The two unilocular taxa investigated are unicarpellate, without any traces of reduced sterile carpels. Carpel orientation is unstable, and the ovary roof and style contain numerous vascular bundles without clearly recognizable dorsals or ventrals. In contrast to pluricarpellate Araliaceae and Apiaceae, the cross zone is apparently oblique in the unicarpellate species. CONCLUSIONS: No support was found for gradual gynoecium reduction via pseudomonomery. The abrupt origin of monomery via direct change of gynoecium merism and the unstable carpel orientation observed are related to the general lability of the flower groundplan in Polyscias. The apparent occurrence of the unusual oblique cross zone in unicarpellate Araliaceae can be explained by developmental constraints.


Subject(s)
Araliaceae/ultrastructure , Flowers/ultrastructure , Araliaceae/genetics , Araliaceae/growth & development , Biological Evolution , Flowers/genetics , Flowers/growth & development , Microscopy , Microscopy, Electron, Scanning , Ovule/genetics , Ovule/growth & development , Ovule/ultrastructure , Phylogeny , Seeds/genetics , Seeds/growth & development , Seeds/ultrastructure , Sequence Analysis, DNA
20.
Am J Bot ; 102(8): 1219-49, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26290547

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: The small primarily Australian commelinid monocot family Centrolepidaceae displays remarkably high structural diversity that has been hitherto relatively poorly explored. Data on Centrolepidaceae are important for comparison with other Poales, including grasses and sedges.• METHODS: We examined vegetative and reproductive morphology in a global survey of Centrolepidaceae based on light and scanning electron microscopy of 18 species, representing all three genera. We used these data to perform a cladistic analysis to assess character evolution.• KEY RESULTS: Each of the three genera is monophyletic; Centrolepis is sister to Aphelia. Some Centrolepidaceae show a change from spiral to distichous phyllotaxy on inflorescence transition. In Aphelia and most species of Centrolepis, several morphologically distinct leaf types develop along the primary shoot axis and flowers are confined to dorsiventral lateral spikelets. Centrolepis racemosa displays secondary unification of programs of leaf development, absence of the leaf hyperphyll and loss of shoot dimorphism. Presence or absence of a leaf ligule and features of inflorescence and flower morphology are useful as phylogenetic characters in Centrolepidaceae.• CONCLUSIONS: Ontogenetic changes in phyllotaxy differ fundamentally between some Centrolepidaceae and many grasses. Inferred evolutionary transformations of phyllotaxy in Centrolepidaceae inflorescences also differ from those in grasses. In contrast with grasses, some Centrolepidaceae possess ligulate leaves where the ligule represents the boundary between the bifacial hypophyll and unifacial hyperphyll. All the highly unusual features of the morphological-misfit species Centrolepis racemosa could result from the same saltational event. Centrolepidaceae offer good perspectives for studies of evolutionary developmental biology.


Subject(s)
Biological Evolution , Magnoliopsida/classification , Magnoliopsida/ultrastructure , Phylogeny , Australia , Falkland Islands , Flowers/ultrastructure , Inflorescence/ultrastructure , Magnoliopsida/growth & development , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...