Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Genet Metab Rep ; 24: 100625, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32714836

ABSTRACT

PURPOSE: Population-based newborn screening (NBS) allows early detection and treatment of inherited disorders. For certain medically-actionable conditions, however, NBS is limited by the absence of reliable biochemical signatures amenable to detection by current platforms. We sought to assess the analytic validity of an ATP7A targeted next generation DNA sequencing assay as a potential newborn screen for one such disorder, Menkes disease. METHODS: Dried blood spots from control or Menkes disease subjects (n = 22) were blindly analyzed for pathogenic variants in the copper transport gene, ATP7A. The analytical method was optimized to minimize cost and provide rapid turnaround time. RESULTS: The algorithm correctly identified pathogenic ATP7A variants, including missense, nonsense, small insertions/deletions, and large copy number variants, in 21/22 (95.5%) of subjects, one of whom had inconclusive diagnostic sequencing previously. For one false negative that also had not been detected by commercial molecular laboratories, we identified a deep intronic variant that impaired ATP7A mRNA splicing. CONCLUSIONS: Our results support proof-of-concept that primary DNA-based NBS would accurately detect Menkes disease, a disorder that fulfills Wilson and Jungner screening criteria and for which biochemical NBS is unavailable. Targeted next generation sequencing for NBS would enable improved Menkes disease clinical outcomes, establish a platform for early identification of other unscreened disorders, and complement current NBS by providing immediate data for molecular confirmation of numerous biochemically screened condition.

2.
Clin Chim Acta ; 501: 216-221, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707166

ABSTRACT

Isovaleric acidemia (IVA) is an inborn error of metabolism caused by deficiency of isovaleryl-CoA dehydrogenase. IVA clinical picture includes gastroenterological and progressive neurological symptoms which can lead to permanent disability and death. Early detection by newborn screening (NBS) and treatment promotes normal development. In this study, clinical summaries, biochemical measurements and targeted next generation sequencing (tNGS) data from the IVD gene were compared in 13 Mexican patients. The main symptoms were vomiting, feeding refusal, abdominal pain, impaired alertness, lethargy, stupor, coma; hypotonia, ataxia, hallucinations, seizures; anemia, neutropenia and pancytopenia. Mean blood concentration of isovalerylcarnintine was above the reference value (0.5 µM) in symptomatic patients (8.78 µM), as well as in the screen positive newborns (2.23 µM). The molecular spectrum of this cohort was heterogeneous, with 14 different variants identified, seven were previously-described, and seven were novel. The most frequent variant was c.158G > C (p.R53P). In this study, we found a long diagnostic delay (average of 44 months). Thus, it is essential to increase physician awareness of this treatable condition. Biochemical IVA NBS accompanied by molecular studies (e.g. tNGS) will permit identification of potentially asymptomatic forms of the disease, and improve genotype-phenotype relationship, management decisions and follow-up.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing , Isovaleryl-CoA Dehydrogenase/deficiency , Sequence Analysis, DNA , Amino Acid Metabolism, Inborn Errors/blood , Biomarkers/blood , Cohort Studies , Delayed Diagnosis , Female , Humans , Infant, Newborn , Isovaleryl-CoA Dehydrogenase/blood , Isovaleryl-CoA Dehydrogenase/genetics , Male , Mexico , Neonatal Screening , Tandem Mass Spectrometry
3.
Genet Med ; 17(5): 337-47, 2015 May.
Article in English | MEDLINE | ID: mdl-25255367

ABSTRACT

PURPOSE: Genetic testing is routinely used for second-tier confirmation of newborn sequencing results to rule out false positives and to confirm diagnoses in newborns undergoing inpatient and outpatient care. We developed a targeted next-generation sequencing panel coupled with a variant processing pipeline and demonstrated utility and performance benchmarks across multiple newborn disease presentations in a retrospective clinical study. METHODS: The test utilizes an in silico gene filter that focuses directly on 126 genes related to newborn screening diseases and is applied to the exome or a next-generation sequencing panel called NBDx. NBDx targets the 126 genes and additional newborn-specific disorders. It integrates DNA isolation from minimally invasive biological specimens, targeted next-generation screening, and rapid characterization of genetic variation. RESULTS: We report a rapid parallel processing of 8 to 20 cases within 105 hours with high coverage on our NBDx panel. Analytical sensitivity of 99.8% was observed across known mutation hotspots. Concordance calls with or without clinical summaries were 94% and 75%, respectively. CONCLUSION: Rapid, automated targeted next-generation sequencing and analysis are practical in newborns for second-tier confirmation and neonatal intensive care unit diagnoses, laying a foundation for future primary DNA-based molecular screening of additional disorders and improving existing molecular testing options for newborns.


Subject(s)
Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Neonatal Screening , Algorithms , Computational Biology/methods , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Infant, Newborn , Reproducibility of Results , Sensitivity and Specificity , Workflow
4.
Nature ; 475(7356): 348-52, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21776081

ABSTRACT

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.


Subject(s)
Genome, Bacterial/genetics , Genome, Human/genetics , Genomics/instrumentation , Genomics/methods , Semiconductors , Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Escherichia coli/genetics , Humans , Light , Male , Rhodopseudomonas/genetics , Vibrio/genetics
5.
J Biomol Tech ; 20(5): 253-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19949697

ABSTRACT

Identifying genetic variants and mutations that underlie human diseases requires development of robust, cost-effective tools for routine resequencing of regions of interest in the human genome. Here, we demonstrate that coupling Applied Biosystems SOLiD system-sequencing platform with microarray capture of targeted regions provides an efficient and robust method for high-coverage resequencing and polymorphism discovery in human protein-coding exons.


Subject(s)
Polymorphism, Genetic , Sequence Analysis, DNA/methods , Base Sequence , Biomedical Technology/methods , Exons , Genetic Variation , Genome, Human , Heterozygote , Homozygote , Humans , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis
6.
Genome Res ; 19(9): 1527-41, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19546169

ABSTRACT

We describe the genome sequencing of an anonymous individual of African origin using a novel ligation-based sequencing assay that enables a unique form of error correction that improves the raw accuracy of the aligned reads to >99.9%, allowing us to accurately call SNPs with as few as two reads per allele. We collected several billion mate-paired reads yielding approximately 18x haploid coverage of aligned sequence and close to 300x clone coverage. Over 98% of the reference genome is covered with at least one uniquely placed read, and 99.65% is spanned by at least one uniquely placed mate-paired clone. We identify over 3.8 million SNPs, 19% of which are novel. Mate-paired data are used to physically resolve haplotype phases of nearly two-thirds of the genotypes obtained and produce phased segments of up to 215 kb. We detect 226,529 intra-read indels, 5590 indels between mate-paired reads, 91 inversions, and four gene fusions. We use a novel approach for detecting indels between mate-paired reads that are smaller than the standard deviation of the insert size of the library and discover deletions in common with those detected with our intra-read approach. Dozens of mutations previously described in OMIM and hundreds of nonsynonymous single-nucleotide and structural variants in genes previously implicated in disease are identified in this individual. There is more genetic variation in the human genome still to be uncovered, and we provide guidance for future surveys in populations and cancer biopsies.


Subject(s)
Base Pairing , Computational Biology/methods , Genetic Variation , Genome, Human , Ligases , Sequence Analysis, DNA/methods , Africa , Base Sequence , Genomics , Genotype , Heterozygote , Homozygote , Humans , Polymorphism, Single Nucleotide , Reference Standards
7.
Science ; 317(5840): 916-24, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17702937

ABSTRACT

Aneuploidy is a condition frequently found in tumor cells, but its effect on cellular physiology is not known. We have characterized one aspect of aneuploidy: the gain of extra chromosomes. We created a collection of haploid yeast strains that each bear an extra copy of one or more of almost all of the yeast chromosomes. Their characterization revealed that aneuploid strains share a number of phenotypes, including defects in cell cycle progression, increased glucose uptake, and increased sensitivity to conditions interfering with protein synthesis and protein folding. These phenotypes were observed only in strains carrying additional yeast genes, which indicates that they reflect the consequences of additional protein production as well as the resulting imbalances in cellular protein composition. We conclude that aneuploidy causes not only a proliferative disadvantage but also a set of phenotypes that is independent of the identity of the individual extra chromosomes.


Subject(s)
Aneuploidy , Cell Proliferation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Cell Division , Chromosomes, Fungal/genetics , G1 Phase , Gene Expression Regulation, Fungal , Genes, Fungal , Glucose/metabolism , Haploidy , Phenotype , Protein Synthesis Inhibitors/pharmacology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Temperature , Transcription, Genetic
8.
Mol Microbiol ; 47(2): 397-409, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12519191

ABSTRACT

The MuA transposase mediates transposition of bacteriophage Mu through two distinct mechanisms. The first integration event following infection occurs through a non-replicative mechanism. In contrast, during lytic growth, multiple rounds of replicative transposition amplify the phage genome. We have examined the influence of gyrase and DNA supercoiling on these two transposition pathways using both a gyrase-inhibiting drug and several distinct gyrase mutants. These experiments reveal that gyrase activity is not essential for integration; both lysogens and recombination intermediates are detected when gyrase is inhibited during Mu infection. In contrast, gyrase inhibition causes severe defects in replicative transposition. In two of the mutants, as well as in drug-treated cells, replicative transposition is almost completely blocked. Experiments probing for formation of MuA-DNA complexes in vivo reveal that this block occurs very early, during assembly of the transposase complex required for the catalytic steps of recombination. The findings establish that DNA structure-based signals are used differently for integrative and replicative transposition. We propose that transposase assembly, the committed step for recombination, has evolved to depend on different DNA /architectural signals to control the reaction outcome during these two distinct phases of the phage life cycle.


Subject(s)
Bacteriophage mu/physiology , DNA Gyrase/metabolism , Gene Expression Regulation, Viral , Transposases/metabolism , Virus Integration/physiology , Virus Replication/physiology , Bacteriolysis , DNA Gyrase/genetics , DNA, Viral/biosynthesis , Escherichia coli/virology , Lysogeny , Mutation , Recombination, Genetic , Topoisomerase II Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...