Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
BMC Cardiovasc Disord ; 23(1): 138, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36922793

ABSTRACT

BACKGROUND: Thoracic Aortic Aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threatening vascular disorder due to the risk of aortic dissection and rupture. There is an urgent need to identify blood-borne biomarkers for the early detection of TAA. The goal of the present study was to identify potential protein biomarkers associated with TAAs, using proteomic analysis of aortic tissue and plasma samples. METHODS: Extracted proteins from 14 aneurysmal and 12 non-aneurysmal thoracic aortic tissue specimens as well as plasma samples from six TAA patients collected pre-and postoperatively and six healthy controls (HC), were analyzed by liquid chromatography-tandem mass spectrometry. Proteomic data were further processed and following filtering criteria, one protein was selected for verification and validation in a larger cohort of patients and controls using a targeted quantitative proteomic approach and enzyme-linked immunosorbent assay, respectively. RESULTS: A total of 1593 and 363 differentially expressed proteins were identified in tissue and plasma samples, respectively. Pathway enrichment analysis on the differentially expressed proteins revealed a number of dysregulated molecular pathways that might be implicated in aneurysm pathology including complement and coagulation cascades, focal adhesion, and extracellular matrix receptor interaction pathways. Alpha-2-HS glycoprotein (AHSG) was selected for further verification in 36 TAA and 21 HC plasma samples using targeted quantitative proteomic approach. The results showed a significantly decreased concentration of AHSG (p = 0.0002) in the preoperative plasma samples compared with HC samples. Further analyses using a larger validation dataset revealed that AHSG protein levels were significantly lower (p = 0.03) compared with HC. Logistic regression analysis on the validation dataset revealed males, advanced age, hypertension and hyperlipidaemia as significant risk factors for TAA. CONCLUSION: AHSG concentrations distinguish plasma samples derived from TAA patients and controls. The findings of this study suggest that AHSG may be a potential biomarker for TAA that could lead to better diagnostic capabilities.


Subject(s)
Aortic Aneurysm, Thoracic , alpha-2-HS-Glycoprotein , Male , Humans , Proteomics/methods , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/surgery , Biomarkers , Proteins/metabolism
3.
Front Mol Biosci ; 9: 837901, 2022.
Article in English | MEDLINE | ID: mdl-35495635

ABSTRACT

The design of new therapeutic molecules can be significantly informed by studying protein-ligand interactions using biophysical approaches directly after purification of the protein-ligand complex. Well-established techniques utilized in drug discovery include isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and structure-based drug discovery which mainly rely on protein crystallography and, more recently, cryo-electron microscopy. Protein-ligand complexes are dynamic, heterogeneous, and challenging systems that are best studied with several complementary techniques. Native mass spectrometry (MS) is a versatile method used to study proteins and their non-covalently driven assemblies in a native-like folded state, providing information on binding thermodynamics and stoichiometry as well as insights on ternary and quaternary protein structure. Here, we discuss the basic principles of native mass spectrometry, the field's recent progress, how native MS is integrated into a drug discovery pipeline, and its future developments in drug discovery.

4.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34832896

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal disorder characterised by progressive muscle wasting. It is caused by mutations in the dystrophin gene, which disrupt the open reading frame leading to the loss of functional dystrophin protein in muscle fibres. Antisense oligonucleotide (AON)-mediated skipping of the mutated exon, which allows production of a truncated but partially functional dystrophin protein, has been at the forefront of DMD therapeutic research for over two decades. Nonetheless, novel nucleic acid modifications and AON designs are continuously being developed to improve the clinical benefit profile of current drugs in the DMD pipeline. We herein designed a series of 15mer and 20mer AONs, consisting of 2'O-Methyl (2'OMe)- and locked nucleic acid (LNA)-modified nucleotides in different percentage compositions, and assessed their efficiency in inducing exon 23 skipping and dystrophin restoration in locally injected muscles of mdx mice. We demonstrate that LNA/2'OMe AONs with a 30% LNA composition were significantly more potent in inducing exon skipping and dystrophin restoration in treated mdx muscles, compared to a previously tested 2'OMe AON and LNA/2'OMe chimeras with lower or higher LNA compositions. These results underscore the therapeutic potential of LNA/2'OMe AONs, paving the way for further experimentation to evaluate their benefit-toxicity profile following systemic delivery.

5.
Nephrology (Carlton) ; 25(12): 937-949, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32743880

ABSTRACT

AIM: Alport syndrome (AS) is the second most common hereditary kidney disease caused by mutations in collagen IV genes. Patients present with microhaematuria that progressively leads to proteinuria and end stage renal disease. Currently, no specific treatment exists for AS. Using mass spectrometry based proteomics, we aimed to detect early alterations in molecular pathways implicated in AS before the stage of overt proteinuria, which could be amenable to therapeutic intervention. METHODS: Kidneys were harvested from male Col4a3-/- knock out and sex and age-matched Col4a3+/+ wild-type mice at 4 weeks of age. Purified peptides were separated by liquid chromatography and analysed by high resolution mass spectrometry. The Cytoscape bioinformatics tool was used for function enrichment and pathway analysis. PPARα expression levels were evaluated by immunofluorescence and immunoblotting. RESULTS: Proteomic analysis identified 415 significantly differentially expressed proteins, which were mainly involved in metabolic and cellular processes, the extracellular matrix, binding and catalytic activity. Pathway enrichment analysis revealed among others, downregulation of the proteasome and PPAR pathways. PPARα protein expression levels were observed to be downregulated in Alport mice, supporting further the results of the discovery proteomics. CONCLUSION: This study provides additional evidence that alterations in proteins which participate in cellular metabolism and mitochondrial homeostasis in kidney cells are early events in the development of chronic kidney disease in AS. Of note is the dysregulation of the PPAR pathway, which is amenable to therapeutic intervention and provides a new potential target for therapy in AS.


Subject(s)
Nephritis, Hereditary/etiology , Nephritis, Hereditary/metabolism , Proteomics , Animals , Autoantigens , Collagen Type IV , Disease Models, Animal , Male , Mice , Mice, Knockout , PPAR alpha/metabolism
6.
Comput Struct Biotechnol J ; 18: 1695-1703, 2020.
Article in English | MEDLINE | ID: mdl-32670509

ABSTRACT

ProTExA is a web-tool that provides a post-processing workflow for the analysis of protein and gene expression datasets. Using network-based bioinformatics approaches, ProTExA facilitates differential expression analysis and co-expression network analysis as well as pathway and post-pathway analysis. Specifically, for a given set of protein-gene expression data across samples, ProTExA: (1) performs statistical analysis and filtering to highlight the differentially expressed proteins-genes, (2) performs enrichment analysis to identify top-scored pathways, (3) generates pathway-to-pathway and pathway-to-gene networks (4) generates protein and gene co-expression networks using a variety of methodologies, and (5) applies clustering methodologies to identify sub-networks of co-expressed proteins-genes. The proposed web-tool is a simple yet informative tool, towards understanding and exploitation of protein and gene expression datasets, especially for those that do not have the expertise and local resources to replicate specific analyses in the context of collaborative and scientific data exchanging.

7.
Arthritis Res Ther ; 22(1): 147, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32552896

ABSTRACT

BACKGROUND: Approximately 50% of systemic lupus erythematosus (SLE) patients develop nephritis, which is among the most severe and frequent complications of the disease and a leading cause of morbidity and mortality. Despite intensive research, there are still no reliable lupus nephritis (LN) markers in clinical use that can assess renal damage and activity with a high sensitivity and specificity. To this end, the aim of this study was to identify new clinically relevant tissue-specific protein biomarkers and possible underlying molecular mechanisms associated with renal involvement in SLE, using mass spectrometry (MS)-based proteomics. METHODS: Kidneys were harvested from female triple congenic B6.NZMsle1/sle2/sle3 lupus mice model, and the respective sex- and age-matched C57BL/6 control mice at 12, 24 and 36 weeks of age, representing pre-symptomatic, established and end-stage LN, respectively. Proteins were extracted from kidneys, purified, reduced, alkylated and digested by trypsin. Purified peptides were separated by liquid chromatography and analysed by high-resolution MS. Data were processed by the Progenesis QIp software, and functional annotation analysis was performed using DAVID bioinformatics resources. Immunofluorescence and multiple reaction monitoring (MRM) MS methods were used to confirm prospective biomarkers in SLE mouse strains as well as human serum samples. RESULTS: Proteomic profiling of kidney tissues from SLE and control mice resulted in the identification of more than 3800 unique proteins. Pathway analysis revealed a number of dysregulated molecular pathways that may be mechanistically involved in renal pathology, including phagosome and proximal tubule bicarbonate reclamation pathways. Proteomic analysis supported by human transcriptomic data and pathway analysis revealed Coronin-1A, Ubiquitin-like protein ISG15, and Rho GDP-dissociation inhibitor 2, as potential LN biomarkers. These results were further validated in other SLE mouse strains using MRM-MS. Most importantly, experiments in humans showed that measurement of Coronin-1A in human sera using MRM-MS can segregate LN patients from SLE patients without nephritis with a high sensitivity (100%) and specificity (100%). CONCLUSIONS: These preliminary findings suggest that serum Coronin-1A may serve as a promising non-invasive biomarker for LN and, upon validation in larger cohorts, may be employed in the future as a screening test for renal disease in SLE patients.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Microfilament Proteins/metabolism , Animals , Biomarkers , Female , Humans , Mice , Mice, Inbred C57BL , Proteomics
8.
Arthritis Res Ther ; 22(1): 107, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32381114

ABSTRACT

BACKGROUND: Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. METHODS: Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. RESULTS: Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. CONCLUSION: Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.


Subject(s)
Proteomics , Scleroderma, Systemic/diagnosis , Biomarkers , Biopsy , High-Throughput Screening Assays , Humans , Scleroderma, Systemic/pathology , Skin
9.
Nucleic Acid Ther ; 30(2): 80-93, 2020 04.
Article in English | MEDLINE | ID: mdl-31873063

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a dominantly inherited, multisystemic disorder characterized clinically by delayed muscle relaxation and weakness. The disease is caused by a CTG repeat expansion in the 3' untranslated region (3' UTR) of the DMPK gene, which leads to the expression of a toxic gain-of-function mRNA. The expanded CUG repeat mRNA sequesters the MBNL1 splicing regulator in nuclear-retained foci structures, resulting in loss of protein function and disruption of alternative splicing homeostasis. In this study, we used CAG repeat antisense oligonucleotides (ASOs), composed of locked nucleic acid (LNA)- and 2'-O-methyl (2'OMe)-modified bases in a chimeric design, to alleviate CUGexpanded-mediated toxicity. Chimeric 14-18mer LNA/2'OMe oligonucleotides, exhibiting an LNA incorporation of ∼33%, significantly ameliorated the misregulated alternative splicing of Mbnl1-dependent exons in primary DM1 mouse myoblasts and tibialis anterior muscles of DM1 mice. Subcutaneous delivery of 14mer and 18mer LNA/2'OMe chimeras in DM1 mice resulted in high levels of accumulation in all tested skeletal muscles, as well as in the diaphragm and heart tissue. Despite the efficient delivery, chimeric LNA/2'OMe oligonucleotides were not able, even at a high-dosage regimen (400 mg/kg/week), to correct the misregulated splicing of Serca1 exon 22 in skeletal muscles. Nevertheless, oligonucleotide doses were well-tolerated as determined by histological and plasma biochemistry analyses. Our results provide proof of concept that inhibition of MBNL1 sequestration by systemic delivery of a steric-blocking ASO is extremely challenging, considering the large number of target sites that need to be occupied per RNA molecule. Although not suitable for DM1 therapy, chimeric LNA/2'OMe oligonucleotides could prove to be highly beneficial for other diseases, such as Duchenne muscular dystrophy, that require inhibition of a single target site per RNA molecule.


Subject(s)
Alternative Splicing/drug effects , Myotonic Dystrophy/therapy , Myotonin-Protein Kinase/genetics , Trinucleotide Repeat Expansion/drug effects , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , Animals , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Disease Models, Animal , Exons/genetics , Humans , Mice , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/antagonists & inhibitors , Oligonucleotides/genetics , Oligonucleotides/pharmacology , RNA Splicing/drug effects , RNA Splicing/genetics , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Trinucleotide Repeat Expansion/genetics
10.
BMJ Open Ophthalmol ; 4(1): e000326, 2019.
Article in English | MEDLINE | ID: mdl-31799410

ABSTRACT

OBJECTIVE: To evaluate the therapeutic effects of omega-3 (ω3) fatty acids in the retina of aged mice when the blood arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio is maintained between 1.0 and 1.5. METHODS AND ANALYSIS: Aged (24-month-old) wild-type C57BL/6J mice were allocated to two groups: ω3 treated and untreated. Treatment with ω3 was by daily gavage administration of EPA and docosahexaenoic acid for 60 days. Gas chromatography was used to identify and quantify fatty acids in the blood and retina. To count lipofuscin granules and measure the photoreceptor layer, eyecups were examined histologically using transmission electron microscopy and light microscopy. We also analysed eyecups using mass spectrometry-based proteomics. RESULTS: AA levels were lower, and EPA levels were higher, in the blood and retinas of the ω3-treated group than in the untreated group, resulting in a lower AA/EPA ratio. The ω3-treated group also showed significantly fewer lipofuscin granules and a thicker outer nuclear layer than the untreated group. Proteomic analysis revealed significantly greater expression of myelin basic protein, myelin regulatory factor-like protein, myelin proteolipid protein and glial fibrillar acidic protein in the ω3-treated group than in the untreated group. Three different pathways were significantly affected by ω3 treatment: fatty acid elongation, biosynthesis of unsaturated fatty acids and metabolic pathways. CONCLUSION: Two months of ω3 supplementation (when the blood AA/EPA~1.0-1.5) in aged mice reduced lipofuscin granule formation in the retina and protected the photoreceptor layer, suggesting that ω3 supplementation slows normal age-related retinal degeneration.

11.
Brief Bioinform ; 20(3): 806-824, 2019 05 21.
Article in English | MEDLINE | ID: mdl-29186305

ABSTRACT

Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine.


Subject(s)
Computational Biology , Precision Medicine/methods , Systems Biology/methods , Biomarkers/metabolism , Diagnosis, Computer-Assisted , Drug Discovery , Drug Repositioning , Humans
12.
Cell Death Dis ; 9(7): 764, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29988040

ABSTRACT

In the healthcare sector, phytocompounds are known to be beneficial by contributing or alleviating a variety of diseases. Studies have demonstrated the progressive effects of phytocompounds on immune-related diseases and to exhibit anticancer effects. Graviola tree is an evergreen tree with its extracts (leafs and seeds) been reported having anticancer properties, but the precise target of action is not clear. Using an in silico approach, we predicted that annonacin, an Acetogenin, the active agent found in Graviola leaf extract (GLE) to potentially act as a novel inhibitor of both sodium/potassium (NKA) and sarcoplasmic reticulum (SERCA) ATPase pumps. We were able to validate and confirm the in silico studies by showing that GLE inhibited NKA and SERCA activity in intact cells. In the present study, we also demonstrated the antiproliferative and anticancer effects of GLE in a variety of cancer cell lines with limited toxic effects on non-transformed cells. Moreover, our results revealed that known inhibitors of both NKA and SERCA pumps could also promote cell death in several cancer cell lines. In addition, a mouse xenograft cancer model showed GLE as able to reduce tumor size and progression. Finally, bioprofiling studies indicated a strong correlation between overexpression of both NKA and SERCA gene expression vs. survival rates. Overall, our results demonstrated that GLE can promote selective cancer cell death via inhibiting NKA and SERCA, and thus can be considered as a potential novel treatment for cancer. After molecular analysis of GLE by liquid chromatography-mass spectrometry and ESI-QTOF-MS analysis, it was found that the MS spectrum of the high abundant chromatographic peak purified sample highly consisted of annonacin.


Subject(s)
Annona/chemistry , Furans/pharmacology , Furans/therapeutic use , Lactones/pharmacology , Lactones/therapeutic use , Plant Extracts/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Chromatography, Thin Layer , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Tandem Mass Spectrometry , Xenograft Model Antitumor Assays
13.
Invest Ophthalmol Vis Sci ; 59(7): 2757-2767, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29860462

ABSTRACT

Purpose: To evaluate the therapeutic effects of omega-3 (ω3) fatty acids on retinal degeneration in the ABCA4-/- model of Stargardt disease when the blood level of arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio is between 1 and 1.5. Methods: Eight-month-old mice were allocated to three groups: wild type (129S1), ABCA4-/- untreated, and ABCA4-/- ω3 treated. ω3 treatment lasted 3 months and comprised daily gavage administration of EPA and docosahexaenoic acid (DHA). Blood and retinal fatty acid analysis was performed using gas chromatography to adjust the blood AA/EPA ∼1 to 1.5. Eyecups were histologically examined using transmission electron microscopy and confocal microscopy to evaluate lipofuscin granules and the photoreceptor layer. Retinal N-retinylidene-N-retinylethanolamine (A2E), a major component of retinal pigment epithelium lipofuscin, was quantified using liquid chromatography and tandem mass spectrometry, in addition to retinal proteomic analysis to determine changes in inflammatory proteins. Results: EPA levels increased and AA levels decreased in the blood and retinas of the treatment group. Significantly less A2E and lipofuscin granules were observed in the treatment group. The thickness of the outer nuclear layer was significantly greater in the treatment group (75.66 ± 4.80 µm) than in the wild-type (61.40 ± 1.84 µm) or untreated ABCA4-/- (56.50 ± 3.24 µm) groups. Proteomic analysis indicated lower levels of complement component 3 (C3) in the treatment group, indicative of lower complement-induced inflammatory response. Conclusions: Three months of ω3 supplementation (AA/EPA ∼1-1.5) reduces A2E levels, lipofuscin granules, and C3 levels in the ABCA4-/- mouse model of Stargardt disease, consistent with slowing of the disease.


Subject(s)
Disease Models, Animal , Fatty Acids, Omega-3/therapeutic use , Macular Degeneration/congenital , ATP-Binding Cassette Transporters/genetics , Administration, Oral , Animals , Chromatography, Gas , Complement C3/metabolism , Cornea/metabolism , Dietary Supplements , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Female , Gas Chromatography-Mass Spectrometry , Lens, Crystalline/metabolism , Lipofuscin/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Retina/metabolism , Retinoids/metabolism , Stargardt Disease , Tandem Mass Spectrometry
14.
Front Mol Neurosci ; 10: 138, 2017.
Article in English | MEDLINE | ID: mdl-28539873

ABSTRACT

Hereditary ATTR V30M amyloidosis is a lethal autosomal dominant sensorimotor and autonomic neuropathy caused by deposition of aberrant transthyretin (TTR). Immunohistochemical examination of sural nerve biopsies in patients with amyloidotic neuropathy show co-aggregation of TTR with several proteins; including apolipoprotein E, serum amyloid P and components of the complement cascade. Complement activation and macrophages are increasingly recognized to play a crucial role in amyloidogenesis at the tissue bed level. In the current study we test the effect of two C5a receptor agonists and a C5a receptor antagonist (PMX53) on disease phenotype in ATTR V30M mice. Our results indicate that amyloid deposition was significantly reduced following treatment with the C5a receptor agonists, while treatment with the antagonist resulted in a significant increase of amyloid load. Administration of the C5a receptor agonists triggered increased recruitment of phagocytic cells resulting in clearance of amyloid deposits.

15.
Mol Nutr Food Res ; 61(4)2017 04.
Article in English | MEDLINE | ID: mdl-27860207

ABSTRACT

SCOPE: A high adherence to the Mediterranean diet (MD) was previously associated with a decreased risk of breast cancer (BC) among Greek-Cypriot women. Additionally, particular polymorphisms were shown to modulate this MD-BC association. Herein, we aimed to investigate the effect of polymorphisms-MD interactions on the levels of specific metabolites that could be related to dietary adherence or enzymatic activity, which is itself modulated by polymorphisms. METHODS AND RESULTS: Greek-Cypriot women who were BC controls and had the lowest or the highest MD adherence (vegetables, fruit, legumes, fish) as assessed by principal component analysis (n = 564) were included. Participants were previously genotyped for nine polymorphisms of the one-carbon metabolism, oxidative stress, and xenobiotic metabolism. The serum levels of 14 metabolites that are key players in the aforementioned pathways were measured by UPLC-MS/MS. ANCOVA was used to assess polymorphism-MD interactions on metabolites' levels within a multivariate linear regression model. Statistically significant interactions between GSTM1 (where GST is glutathione S-transferase) deletion polymorphism and MD on flavin mononucleotide and on 5-methyltetrahydrofolate (5-MTHF) concentrations were observed. The MTHFR rs1801133 interacted significantly with MD on 5-MTHF concentration. CONCLUSION: Serum levels of flavin mononucleotide and 5-MTHF were shown to be influenced by interactions between GSTM1 deletion or MTHFR (rs1801133) polymorphisms and a dietary pattern, characteristic of MD.


Subject(s)
Breast Neoplasms/diet therapy , Diet, Mediterranean , Metabolomics , Adult , Aged , Fabaceae , Female , Fruit , Genotype , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Greece , Humans , Middle Aged , Oxidative Stress , Polymorphism, Genetic , Tetrahydrofolates , Vegetables
16.
J Cell Mol Med ; 21(5): 993-1012, 2017 05.
Article in English | MEDLINE | ID: mdl-27878954

ABSTRACT

Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice.


Subject(s)
Biomarkers/metabolism , Lupus Erythematosus, Systemic/metabolism , Mass Spectrometry/methods , Proteomics/methods , Humans
17.
Crit Rev Clin Lab Sci ; 51(5): 280-90, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24901807

ABSTRACT

Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.


Subject(s)
Immunologic Deficiency Syndromes , Ubiquitin , Ubiquitination/physiology , Humans , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/physiopathology , Models, Molecular , Protein Structure, Tertiary , Signal Transduction , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin/physiology
18.
FEBS Lett ; 586(23): 4144-7, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23085066

ABSTRACT

Ubiquitin (Ub) is able to form polymeric isopeptide-linked chains through condensation of any of its seven lysine (Lys) residues with the C-terminus of an adjacent Ub monomer. Electrospray ionisation mass spectrometry (ESI-MS) of commercial in vitro-generated Lys48-linked di-Ub (Lys48-Ub(2)) revealed a major population of cyclised dimer. The absence of a free C-terminus in this population was confirmed by an inability to bind the zinc finger ubiquitin-binding domain (ZnF-UBP) of USP5/isopeptidase-T. Endogenous Ub(2) purified from skeletal muscle and cultured mammalian cells was found to contain cyclic Lys48-Ub(2), demonstrating that cyclisation of poly-Ub can also occur in vivo.


Subject(s)
Ubiquitins/chemistry , Ubiquitins/metabolism , Animals , Chromatography, Affinity , Humans , Muscle, Skeletal/metabolism , Rats , Spectrometry, Mass, Electrospray Ionization
19.
J Am Chem Soc ; 134(14): 6416-24, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22428841

ABSTRACT

Non-covalent interactions between ubiquitin (Ub)-modified substrates and Ub-binding domains (UBDs) are fundamental to signal transduction by Ub receptor proteins. Poly-Ub chains, linked through isopeptide bonds between internal Lys residues and the C-terminus of Ub, can be assembled with varied topologies to mediate different cellular processes. We have developed and applied a rapid and sensitive electrospray ionization-mass spectrometry (ESI-MS) method to determine isopeptide linkage-selectivity and affinity of poly-Ub·UBD interactions. We demonstrate the technique using mono-Ub and poly-Ub complexes with a number of α-helical and zinc-finger (ZnF) UBDs from proteins with roles in neurodegenerative diseases and cancer. Affinities in the 2-200 µM range were determined to be in excellent agreement with data derived from other biophysical techniques, where available. Application of the methodology provided further insights into the poly-Ub linkage specificity of the hHR23A-UBA2 domain, confirming its role in Lys48-linked poly-Ub signaling. The ZnF UBP domain of isopeptidase-T showed no linkage specificity for poly-Ub chains, and the Rabex-5 MIU also exhibited little or no specificity. The discovery that a number of domains are able to bind cyclic Lys48 di-Ub with affinities similar to those for the acyclic form indicates that cyclic poly-Ub may be capable of playing a role in Ub-signaling. Detection of a ternary complex involving Ub interacting simultaneously with two different UBDs demonstrated the co-existence of multi-site interactions, opening the way for the study of crosstalk between individual Ub-signaling pathways.


Subject(s)
Mass Spectrometry/methods , Ubiquitin/chemistry , Binding Sites , Cell Line, Tumor , Humans , Kinetics , Lysine/chemistry , Peptides/chemistry , Polymerase Chain Reaction , Protein Structure, Tertiary , Proteins/chemistry , Signal Transduction , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Water/chemistry , Zinc Fingers
20.
J Proteome Res ; 11(3): 1969-80, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22268864

ABSTRACT

The diverse influences of ubiquitin, mediated by its post-translational covalent modification of other proteins, have been extensively investigated. However, more recently roles for unanchored (nonsubstrate linked) polyubiquitin chains have also been proposed. Here we describe the use of ubiquitin-binding domains to affinity purify endogenous unanchored polyubiquitin chains and their subsequent characterization by mass spectrometry (MS). Using the A20 Znf domain of the ubiquitin receptor ZNF216 we isolated a protein from skeletal muscle shown by a combination of nanoLC-MS and LC-MS/MS to represent an unmodified and unanchored K48-linked ubiquitin dimer. Selective purification of unanchored polyubiquitin chains using the Znf UBP (BUZ) domain of USP5/isopeptidase-T allowed the isolation of K48 and K11-linked ubiquitin dimers, as well as revealing longer chains containing as many as 15 ubiquitin moieties, which include the K48 linkage. Top-down nanoLC-MS/MS of the A20 Znf-purified ubiquitin dimer generated diagnostic ions consistent with the presence of the K48 linkage, illustrating for the first time the potential of this approach to probe connectivity within endogenous polyubiquitin modifications. As well as providing initial proteomic insights into the molecular composition of endogenous unanchored polyubiquitin chains, this work also represents the first definition of polyubiquitin chain length in vivo.


Subject(s)
Polyubiquitin/metabolism , Ubiquitinated Proteins/metabolism , Amino Acid Sequence , Animals , Chromatography, Affinity/methods , DNA-Binding Proteins/chemistry , Humans , Immobilized Proteins/chemistry , Male , Muscle, Skeletal/metabolism , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Polyubiquitin/chemistry , Polyubiquitin/isolation & purification , Protein Binding , Protein Structure, Tertiary , Rats , Tandem Mass Spectrometry , Tumor Necrosis Factor alpha-Induced Protein 3 , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...