Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 177: 140-146, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39013288

ABSTRACT

Inflammation and oxidative stress are both considered to be factors in the etiopathogenesis of schizophrenia. LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) and ox-LDL (oxidized low-density lipoprotein) have been reported to be active in neuroinflammation pathways in which they are involved in oxidative stress and inflammation. However, its relationship with schizophrenia is unclear. This study aimed to assess the potential connection between serum ox-LDL and LOX-1 levels in schizophrenia patients, their unaffected first-degree relatives, and healthy controls. The study comprised 63 schizophrenia patients, 57 first-degree relatives, and 63 healthy controls who were age, gender, and BMI-matched. Serum ox-LDL and LOX-1 levels were measured. PANSS was used to assess the severity of the disease. Levels of both ox-LDL and LOX-1 were markedly elevated in individuals diagnosed with schizophrenia when compared to both their relatives and a control group. While ox-LDL levels were significantly higher in relatives of patients compared to controls, there was no significant difference between relatives of patients and control groups for LOX-1 levels. Significant correlations were observed between PANNS general and total and ox-LDL levels and PANNS negative and LOX-1 levels. The relationship between ox-LDL and LOX-1 and schizophrenia is quite limited in the literature and is a new field of study. Future studies are needed to evaluate their role in etiopathogenesis.

2.
Int J Dev Neurosci ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010691

ABSTRACT

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region. The aim of the project was to investigate the role of hippocampal neurogenesis in the promnestic effects of NK3R agonist administration in an amyloid beta-induced AD rat model. Wistar albino rats were divided into control, Alzheimer, NK3R agonist and Alzheimer + NK3R agonist groups. The open field (OF) test and Morris water maze (MWM) test were performed for locomotor activity and memory analysis. Peptide gene expression levels (Nestin, DCX, Neuritin, MASH1, Neun, BDNF) were analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR). In the OF test, the group-time relationship was found to be statistically different in the parameters of distance travelled and percentage of movement (p < 0.05). In MWM, the time to reach the platform and the time spent in the target quadrant were statistically significant between the groups (p < 0.05). Statistically significant differences were observed in gene expression levels (Nestin, DCX, Neuritin, MASH1) in the hippocampal tissue of rats between the groups (p < 0.05). NK3 receptor agonism favourably affected hippocampal neurogenesis in AD model rats. It was concluded that NK3 receptor agonism in the hippocampus, which is the first affected region in the physiopathology of AD, may be effective in both the formation of neural precursor cells and the reduction of neuronal degeneration. The positive effect of NK3R on cognitive functions may be mediated by hippocampal neurogenesis.

3.
Amino Acids ; 55(4): 481-498, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36745246

ABSTRACT

Alzheimer's disease (AD) is accepted as a form of progressive dementia. Cholinergic systems are commonly affected in AD. Neurokinin 3 receptor (NK3R) is involved in learning memory-related processes. It is known that the activation of NK3R affects the release of many neurotransmitters. The aim of this project was to investigate the effects of NK3R agonist senktide administration on neurobehavioral mechanisms in the experimental AD-like rat model. 50 male Wistar albino rats were divided into Control (C), AD, Control + NK3R agonist (CS), AD + NK3R agonist (ADS), AD + NK3Ragonist + antagonist groups (ADSO). We designed AD-like model by intrahippocampal administration of Aß1-42. After NK3R agonist + antagonist injections, open field (OF), Morris water maze (MWM) tests were applied. Cholinergic mechanism analysis from hippocampus-cortex tissues was performed by ELISA and catecholamine analysis from brain stem tissue were performed by HPLC method. The transitions from edge to center, rearing, grooming parameters were found to be reduced in final values of OF. While the group-time interaction was significant in the OF test findings, there was no significant difference between the groups. In MWM test, ADS group showed a learning level close to control group and animals in AD and ADSO groups could not learn target quadrant in MWM test. The brain stem NA and DA concentrations were not statistically significant. Hippocampal AChE-ChAT levels were supported by positive effects of senktide on learning via the cholinergic mechanisms. As a result, NK3R agonists were found to be effective in improving cognitive functions in rats with AD pathology. In the experimental AD model, positive effects of NK3R on learning memory may be mediated by cholinergic mechanisms.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Rats , Male , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Receptors, Neurokinin-3/agonists , Rats, Wistar , Hippocampus , Cholinergic Agents , Disease Models, Animal
4.
Turk J Med Sci ; 52(5): 1532-1542, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36422497

ABSTRACT

BACKGROUND: Kisspeptin is a neuropeptide with a primary role on the onset of puberty and has beneficial effects on ischemia/ reperfusion (I/R) injury. In this study, we aimed to investigate the effect of kisspeptin administration on striatal I/R injury in mice. METHODS: Forty adult C57/BL6 mice were randomly divided into four groups: Sham, Kisspeptin, I/R, and I/R + Kisspeptin groups. The groups were administered with either physiological saline (Sham and I/R groups) or kisspeptin (Kisspeptin and I/R + Kisspeptin groups) intraperitoneally 40 min before the operation. A microdialysis probe was placed in the right striatum according to stereotaxic coordinates. During the experimental period, artificial cerebrospinal fluid was passed through the micropump. Then, transient cerebral ischemia was established by compressing both common carotid arteries with an aneurysm clip for 15 min and animals were reperfused for 2 h. Throughout the process of microdialysis (before, during and after I/R period), samples were collected to measure dopamine (DA), noradrenaline (NA), and 3,4-dihydroxyphenylglycine (DHPG) at intervals of 20 min continuously. At the end of the reperfusion period, the animals were decapitated, striatum was dissected, half of the animals were used for oxidative stress analyses (reduced glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD), malondialdehyde (MDA), and the other half were used for histopathology analyses. RESULTS: Number of glial cells was significantly increased in kisspeptin-administered groups. DA levels in ischemic animals were decreased by kisspeptin administration (p < 0.0001). NA levels were reduced in animals administered with kisspeptin without I/R injury (p < 0.05). DHPG levels reduced during the reperfusion period in ischemic animals (p < 0.05). Kisspeptin did not exhibit a significant antioxidant activity in the ischemic animals, while GST and SOD levels were reduced in the I/R + kisspeptin group compared to the kisspeptin group (p < 0.05). DISCUSSION: Our results suggest that kisspeptin may be regulating the neurotransmitter release and metabolism, as well as inflammatory response in brain upon I/R injury.


Subject(s)
Kisspeptins , Reperfusion Injury , Animals , Mice , Kisspeptins/pharmacology , Reperfusion Injury/prevention & control , Dopamine , Norepinephrine , Glutathione Transferase , Superoxide Dismutase , Ischemia
5.
Neurochem Res ; 47(5): 1299-1316, 2022 May.
Article in English | MEDLINE | ID: mdl-35080689

ABSTRACT

Depression is a chronic, recurrent and life-threatening disease affecting approximately 15% of the world population. Depression is responsible for neuropathologies like decreased neurogenesis and increased dendritic atrophy. Antidepressant treatments increase hippocampal neurogenesis and neurotrophic factor expression. Based on this information, it was aimed to investigate effect of sertraline on depression in rats with chronic mild stress (CMS) model and to determine how it affects cell proliferation and hypothalamic peptide levels in hypothalamus. 56 adult male Wistar albino; control, depression(D), depression + sertraline, sertraline were divided into groups. Various stressors were applied to D for 30 days. Open field test (OFT) and forced swimming test (FST) were conducted to check whether the animals were depressed. On the 16th day osmotic minipump was placed subcutaneously and sertraline (10 mg/kg/day) was administered for 15 days. Behavior tests were done. Hypothalamic peptide gene expression levels were analyzed by quantitative RT-PCR. Statistical evaluations were made using ANOVA. It caused a decrease in the percentage of movement in the D and control groups in the OFT, an increase in the immobility time in the D group in the FST, and an increase in the swimming behavior in the DS group. Animals did not show any anxiological behavior based on the elevated plus maze test results. CMS caused a decrease in GLUT2 and NPY gene expression in the hypothalamus of animals, an increase in POMC and FGFR2, and an increase in IGFIR and GLUT2 gene expression in the DS group. Sertraline has been shown to ameliorate the effects of CMS-induced depression. Sertraline is thought to have a positive regulatory effect on both the formation of neural precursor cells and the survival of newly formed neurons in the hypothalamus. Newly formed neurons in the hypothalamus express food intake-related NPY, POMC, GLUT2 neurons, and thus hypothalamic tanycytes may play a key role in the control of energy metabolism.


Subject(s)
Neural Stem Cells , Sertraline , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Disease Models, Animal , Eating , Hypothalamus/metabolism , Male , Models, Theoretical , Peptides/metabolism , Rats , Rats, Wistar , Sertraline/pharmacology , Sertraline/therapeutic use , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Swimming
6.
Int J Vitam Nutr Res ; 92(5-6): 349-356, 2022 Oct.
Article in English | MEDLINE | ID: mdl-32954971

ABSTRACT

Alterations of essential elements in the brain are associated with the pathophysiology of many neuropsychiatric disorders. It is known that chronic/overwhelming stress may cause some anxiety and/or depression. We aimed to investigate the effects of two different chronic immobilization stress protocols on anxiety-related behaviors and brain minerals. Adult male Wistar rats were divided into 3 groups as follows (n = 10/group): control, immobilization stress-1 (45 minutes daily for 7-day) and immobilization stress-2 (45 minutes twice a day for 7-day). Stress-related behaviors were evaluated by open field test and forced swimming test. In the immobilization stress-1 and immobilization stress-2 groups, percentage of time spent in the central area (6.38 ± 0.41% and 6.28 ± 1.03% respectively, p < 0.05) and rearing frequency (2.75 ± 0.41 and 3.85 ± 0.46, p < 0.01 and p < 0.05, respectively) were lower, latency to center area (49.11 ± 5.87 s and 44.92 ± 8.04 s, p < 0.01 and p < 0.01, respectively), were higher than the control group (8.65 ± 0.49%, 5.37 ± 0.44 and 15.3 ± 3.32 s, respectively). In the immobilization stress-1 group, zinc (12.65 ± 0.1 ppm, p < 0.001), magnesium (170.4 ± 1.7 ppm, p < 0.005) and phosphate (2.76 ± 0.1 ppm, p < 0.05) levels were lower than the control group (13.87 ± 0.16 ppm, 179.31 ± 1.87 ppm and 3.11 ± 0.06 ppm, respectively). In the immobilization stress-2 group, magnesium (171.56 ± 1.87 ppm, p < 0.05), phosphate (2.44 ± 0.07 ppm, p < 0.001) levels were lower, and manganese (373.68 ± 5.76 ppb, p < 0.001) and copper (2.79 ± 0.15 ppm, p < 0.05) levels were higher than the control group (179.31 ± 1.87 ppm, 3.11 ± 0.06 ppm, 327.25 ± 8.35 ppb and 2.45 ± 0.05 ppm, respectively). Our results indicated that 7-day chronic immobilization stress increased anxiety-related behaviors in both stress groups. Zinc, magnesium, phosphate, copper and manganese levels were affected in the brain.


Subject(s)
Depression , Magnesium , Animals , Anxiety , Brain , Copper , Immobilization , Male , Manganese , Minerals , Phosphates , Rats , Rats, Wistar , Zinc
7.
Arch Physiol Biochem ; 125(2): 122-127, 2019 May.
Article in English | MEDLINE | ID: mdl-29463132

ABSTRACT

There are several reports on unfavourable effects of metabolic cage housing on animal welfare mainly due to the characteristic structures of these cages such as single housing and grid flooring. This study was aimed to compare the effects of long-term metabolic cage housing and conventional housing (normal grouped housing in standard cages) on the anxiety/depression-like behaviours in male rats. Anxiety/depression-related behaviours were evaluated by use of forced swimming test and open field test. Swimming and climbing were significantly lower and immobility duration higher in the metabolic cage group. In the open field test, total distance, mean velocity, time spent in the central area, zone transition, grooming, and rearing scores were significantly lower in the metabolic cage. Moreover, serum corticosterone level was higher in the metabolic cage group. The results of the study indicate that long-term metabolic cage housing may cause an increase in the anxiety- and depression-related behaviours in male rats.


Subject(s)
Animal Husbandry , Anxiety/metabolism , Depression/metabolism , Animals , Anxiety/blood , Anxiety/etiology , Behavior, Animal , Blood Glucose/metabolism , Corticosterone/blood , Depression/blood , Depression/etiology , Male , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL