Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3677, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355956

ABSTRACT

We investigated the multifaceted gas sensing properties of porous silicon thin films electrodeposited onto (100) oriented P-type silicon wafers substrates. Our investigation delves into morphological, optical properties, and sensing capabilities, aiming to optimize their use as efficient gas sensors. Morphological analysis revealed the development of unique surfaces with distinct characteristics compared to untreated sample, yielding substantially rougher yet flat surfaces, corroborated by Minkowski Functionals analysis. Fractal mathematics exploration emphasized that despite increased roughness, HF/ethanol-treated surfaces exhibit flatter attributes compared to untreated Si sample. Optical approaches established a correlation between increased porosity and elevated localized states and defects, influencing the Urbach energy value. This contributed to a reduction in steepness values, attributed to heightened dislocations and structural disturbances, while the transconductance parameter decreases. Simultaneously, porosity enhances the strength of electron‒phonon interaction. The porous silicon thin films were further tested as effective gas sensors for CO2 and O2 vapors at room temperature, displaying notable changes in electrical resistance with varying concentrations. These findings bring a comprehensive exploration of some important characteristics of porous silicon surfaces and established their potential for advanced industrial applications.

2.
Sci Rep ; 13(1): 6518, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085689

ABSTRACT

Due to the large number of industrial applications of transparent conductive oxides (TCOs), this study focuses on one of the most important metal oxides. The RF-magnetron sputtering method was used to fabricate NiO thin films on both quartz and silicon substrates at room temperature under flow of Argon and Oxygen. The sputtered samples were annealed in N2 atmosphere at 400, 500, and 600 °C for 2 hours. Using the AFM micrographs and WSXM 4.0 software, the basic surface parameters, including root mean square roughness, average roughness, kurtosis, skewness, etc., were computed. Advanced surface parameters were obtained by the Shannon entropy through a developed algorithm, and the power spectral density and fractal succolarity were extracted by related methods. Optical properties were studied using a transmittance spectrum to achieve the optical bandgap, absorption coefficient, Urbach energy, and other optical parameters. Photoluminescence properties also showed interesting results in accordance with optical properties. Finally, electrical characterizations and I-V measurements of the NiO/Si heterojunction device demonstrated that it can be used as a good diode device.

3.
Microsc Res Tech ; 86(6): 731-741, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36974978

ABSTRACT

We have investigated the evolution of the structure and surface morphology of n-ZnO/p-ZnO homojunctions and n-ZnO/p-NiO heterojunctions transparent structures deposited by radio frequency-sputtering on quartz (Q)/ITO substrates. X-ray diffraction (XRD) analysis of the as-deposited and annealed ZnO, n-ZnO/p-NiO/Q/ITO, and n-ZnO/p-ZnO/Q/ITO thin films showed that ZnO had a wurtzite hexagonal structure and (002) preferred growth direction. The annealing temperature played a key role in improving the crystalline structure of the films, as evidenced by the changes in the intensity and position of the XRD (002) peak. Morphological analysis revealed that the roughness of the film varies with increasing annealing temperature. Particle size dictates the vertical growth of p-ZnO homojunctions, while particle shape dictated the p-NiO heterojunctions growth. Fractal analysis showed that p-ZnO homojunctions have similar spatial complexity, surface percolation, and topographical uniformity and are dominated by low dominant frequencies. Moreover, a robust multifractal character was observed, where n-ZnO/p-ZnO homojunctions follow similar vertical growth dynamics, which differed from the n-ZnO/p-NiO heterojunctions growth dynamics. These results prove that annealing temperature plays a key role in the n-ZnO/p-ZnO homojunctions and n-ZnO/p-NiO heterojunctions structure, surface morphology, and vertical growth dynamics.

4.
Microsc Res Tech ; 85(11): 3674-3693, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36250443

ABSTRACT

The article presents results on fabrication and characterization of transparent, oxide-based junction diodes on quartz substrates. The devices are made by radio frequency magnetron sputtering in the form of sandwich structures: ITO:n-ZnO:p-NiO (homojunction) and ITO:n-ZnO:p-NZO (heterojunction). The microstructure, crystalline structure, and micromorphology features of deposited samples are studied by means of X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. Obtained results are used to derive statistical, fractal and functional surface characteristics that exhibited secondary alignment patterns. Apart from that, optical and electrical measurements are carried out as well. Optical transmittance peaked at 80% in visible range, but substantially increased after annealing. Due to structural differences, heterojunction was found to follow linear current-voltage dependence specific of ohmic contacts, whereas homojunction was found to follow non-linear characteristics as in junction diode.

5.
Sci Rep ; 12(1): 12002, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35835814

ABSTRACT

In this study, we investigated the morphology of synthesized Cu/Ni nanoparticles in trace of carbon sources by the co-deposition process of RF sputtering and RF-PECVD methods and localized surface plasmon resonance of CO gas sensing of Cu/Ni nanoparticles. The surface morphology was studied by analyzing 3D micrographs of atomic force microscopy using image processing techniques and fractal/multifractal analyses. The MountainsMap® Premium software with the two-way ANOVA (Variance analysis) and least-significant differences tests were used for statistical analysis. The surface nano-patterns have a local and global particular distribution. Experimental and simulated Rutherford backscattering spectra confirm the quality of nanoparticles. Then, prepared samples were exposed to CO gas flue to study their gas sensor application using the localized surface plasmon resonance method. Increasing the Ni layer over Cu one shows an interesting result in both morphology and gas sensing sides. Advanced stereometric analyses for the surface topography of thin films in conjunction with Rutherford backscattering spectrometry and Spectroscopic analysis make a unique study in the field.

6.
Microsc Res Tech ; 85(5): 1964-1975, 2022 May.
Article in English | MEDLINE | ID: mdl-35045209

ABSTRACT

We introduce a study of image analysis of kefir biofilms associated with Acai extract prepared by fermentation of fresh kefir grains natural. Atomic force microscopy data were studied, aiming to understand how the concentration of acai berry (Euterpe oleracea Mart.) influences the surface morphology as well as the texture complexity, evaluated by the fractal dimension. The results showed that the superficial morphology was affected by the increase of Acai concentration in the biofilms, as well as the fractal dimension. It has also been observed that the surface of the biofilm presented saturation when concentration changes from 40 to 60 ml. On the other hand, it was observed that the intermediate sample produced with 20 ml of acai berry seems to be the best point for biofilms production that can serve as a skin dressing since other studies related to mechanical properties and in vitro and in vivo tests can confirm this applicability. Thus, the characterization of the surface morphology of kefir biofilms by the evaluation of surface statistical parameters and fractal geometry may provide promising results regarding the applicability of these films. RESEARCH HIGHLIGHTS: We characterized the structural complexity of the 3-D surface of the kefir biofilms associated with açaí extract. The 3-D surface analysis of the samples was performed using an atomic force microscope operating in contact mode. We determined the stereometric and fractal dimension of the analyzed samples.


Subject(s)
Euterpe , Kefir , Biofilms , Euterpe/chemistry , Fractals , Kefir/analysis , Plant Extracts/chemistry
7.
Microsc Res Tech ; 84(6): 1098-1105, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33405274

ABSTRACT

The main goal of the present work is to explore the three dimensional (3-D) atomic force microscopy (AFM) images of human teeth and investigating their micromorphology. For this purpose, 10 fresh and permanent canine teeth were selected from a group of 40-year-old men who were candidate for the experimental processes. Afterward, they were all applied for studying the morphology of their hard tissues. The tapping mode of AFM was used to characterize the surface micromorphology on the square areas of 1 µm × 1 µm (512 × 512 pts). AFM results and surface stereometric analysis indicate the relationships between the micromorphology of the surface and the structural properties of these tissues across the length scales. As can be seen, the surface of cementum has the most irregular topography (D = 2.87 ± 0.01) while the most regular topography (D = 2.43 ± 0.01) is found in dentin. Furthermore, the more and less regularity of the surface have been found in inner enamel (Sq = 26.26 nm) and dentin (Sq = 41.28 nm), respectively. Stereometric and fractal analyses give valuable information about human canine teeth via 3-D micromorphology.


Subject(s)
Cuspid , Dental Cementum , Adult , Dental Enamel , Dentin , Humans , Male , Microscopy, Atomic Force
8.
Microsc Res Tech ; 84(1): 89-100, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32860319

ABSTRACT

The physical properties of electronic devices made by 2,6-diphenyl anthracene (DPA) are influenced by the microtexture of DPA surfaces. This work focused on the experimental investigation of the 3-D surface microtexture of DPA thin films deposited on OTS (octadecyltrichlorosilane), HMDS (Hexamethyldisilasane), OTMS (octadecyltrimethoxysilane), and Si/SiO2 (300 nm SiO2 thickness) substrates with 5 and 50 nm thicknesses and 5 and 10 µm scan size. The thin film surfaces were recorded using atomic force microscopy (AFM) and their images were stereometrically analyzed to obtain statistical parameters, in accordance with ASME B46.1-2009 and ISO 25178-2: 2012. The results showed the effect of different manufacturing parameters on microtexture values where the granular structure is confirmed in all films. In addition, root mean square is increased by increasing the thickness from 5 to 50 nm for all types of substrates.

9.
Microsc Res Tech ; 84(6): 1205-1211, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33350550

ABSTRACT

In this article, the Ni-Cu nanoparticles (NPs) in the amorphous carbon hydrogenated thin films with different copper percentage by co-deposition of RF-plasma enhanced chemical vapor deposition were prepared using acetylene gas and Ni and Cu targets. The films deposited with 5% Cu have minimum value of the average diameter of Multi-walled Carbon Nanotubes, MWCNTs, in about of 100 nm. It can be seen that the lateral size values of the nanoparticles for films with 5% Cu have minimum value of 5.34 nm. Films deposited with 75% Cu have maximum value of optical density specially in high energy. The spectral density power of all films indicated the presence of fractal components in prominent topographies. Films deposited without Cu NPs have minimum value of fractal dimension in about of 2.96. The diagram of the bearing area versus the nanoparticles height has shown the percentage of cavities and single-layers. The single-layer contents of all films were about 95%.

10.
Microsc Res Tech ; 83(5): 457-463, 2020 May.
Article in English | MEDLINE | ID: mdl-31912934

ABSTRACT

This work describes an analysis of titanium dioxide (TiO2 ) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2 /Ar atmosphere in correlation with three-dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as-deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 µm × 0.95 µm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178-2:2012 and American Society of Mechanical Engineers (ASME) B46.1-2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.

11.
Microsc Res Tech ; 82(11): 1884-1890, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31400189

ABSTRACT

Determining surface topography of different tissues of the molar tooth with novel analytical methods has opened new horizons in dental surface measurements which characterize tooth surface quality in dentistry. Studying surface topological measurements and comparing surface morphology of hard tissue of the molar tooth are the ultimate goals of the present study. Ten molar teeth have been chosen for investigating their surface characteristics through image processing techniques. The power spectral density (PSD) and fast Fourier transform algorithms of every molar tooth containing enamel, dentin, and cementum have determined that the characterization of surface profiles is possible. As can be seen, PSD along with fractal dimensions leads to good results for teeth surface topography. Moreover, PSD angular plot assures appropriate description of surface.


Subject(s)
Dental Cementum/ultrastructure , Dental Enamel/ultrastructure , Dentin/ultrastructure , Fractals , Molar/ultrastructure , Adult , Crystallography, X-Ray , Fourier Analysis , Hardness/physiology , Humans , Male , Microscopy, Atomic Force , Molar/diagnostic imaging , Surface Properties
12.
Microsc Res Tech ; 82(4): 421-428, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30575228

ABSTRACT

Human tooth exhibits a structure of a mixture of inorganic hydroxyapatite nanocrystals and organic phases. The aim of this study is to investigate different tissues of human canine teeth surface along with the micro structure parameters of each tissue. X-ray diffraction (XRD) is used to study the amorphous or crystalline nature of each tissue with different mineral compositions and crystalline structures where the highest crystalline quality is related to enamel. The surfaces are also examined by energy-dispersive X-ray spectrometry. Moreover, crystalline quality factor is carried out to estimate the crystallinity of the tissues. Also, based on the basic Scherrer equation, the Williamson-Hall equation is applied to extend the formula for the XRD. Enamel and cementum tissues of a typical human tooth, which look similar, are composed of a large variety of wide lines with different widths through Raman spectra analysis. In addition, the applied scanning electron microscopy extracts similar morphology for all tissues with round granular structures which are denser in the cementum. Atomic force microscopy is finally used for investigation of micro-morphologies of the different tissues and the results are compared with the fractal analysis which ends to the bifractal and anisotropic nature of enamel and cementum along with monofractal and isotropic nature of dentin.


Subject(s)
Cuspid/physiology , Cuspid/ultrastructure , Dental Cementum/ultrastructure , Dental Enamel/ultrastructure , Fractals , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman , X-Ray Diffraction
13.
Microsc Res Tech ; 81(10): 1223-1230, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30351526

ABSTRACT

The objective of this study was to evaluate the effect of two photoactivation modes of dental LED light-curing unit (LCUs) (conventional and "Soft Start" mode) on surface texture parameters of two dental resin-based nanocomposites. LED LCUs were considered as standard light-curing devices in contemporary dental practice. Atomic force microscopy (AFM) was applied to investigate surface morphology on 90 × 90 µm2 scanning area through 2D multifractal detrended fluctuation analysis with computational algorithms basis. In order to compare 3D surface roughness at nanometer scale, singularity spectrum f[α] was used which characterize local scale properties of multifractal nature of samples. The results confirmed that larger spectrum width Δα (Δα = αmax - αmin ) of f(α) is associated with non-uniform surface morphology. Moreover, materials whose polymerization was photoactivated by the "soft start" polymerization mode, showed better quality of the surface microstructure with lower values of AFM surface texture parameters.


Subject(s)
Composite Resins/chemistry , Curing Lights, Dental , Nanocomposites/chemistry , Humans , Materials Testing , Microscopy, Atomic Force , Surface Properties
14.
Sci Rep ; 8(1): 10870, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30022150

ABSTRACT

Nowadays, increasing awareness of environment and fossil fuels protection stimulates intensive research on clean and renewable sources of energy. Production of hydrogen from water through solar-driven splitting reactions is one of the most promising approaches in the field of photoelectrochemistry (PEC). In this work we have fabricated well-aligned, highly-ordered, smooth-mouth TiO2 nanotube arrays (TNAs) in a two-step anodization process of titanium foil, which were then used as photoelectrodes for PEC water splitting. It demonstrates for the first time correspondence between non-linear component characteristics of multiscale rough surface and crystalline structure of annealed TNAs measured at various fabrication stages and their photoelectrochemical response. The as-anodized TNAs with isotropic surface (deduced from AFM and SEM images) and largest figure of merit (according to their PEC performance) were annealed at 450 °C in air. Scale-invariant descriptors of the surface structure of the deposits involved: fractal dimension, corner frequency, roughness, size of nanostructures and their dominant habits. Moreover, X-ray diffraction data processed using the Rietveld method confirmed co-existence of various oxides, for example: TiO2 in the form of anatase, TiO and Ti3O5 phases in the TNAs under study pointing that previous well-established mechanisms of the TNA growth were to certain degree incomplete.

15.
Microsc Res Tech ; 80(12): 1328-1336, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28905452

ABSTRACT

The purpose of this work is to study the dependence of AFM-data reliability on scanning rate. The three-dimensional (3D) surface topography of the samples with different micro-motifs is investigated. The analysis of surface metrics for estimation of artifacts from inappropriate scanning rate is presented. Fractal analysis was done by cube counting method and evaluation of statistical metrics was carrying out on the basis of AFM-data. Combination of quantitate parameters is also presented in graphs for every measurement. The results indicate that the sensitivity to scanning rate growths with fractal dimension of the sample. This approach allows describing the distortion of the images against scanning rate and could be applied for dependences on the other measurement parameters. The article explains the relevance and comparison of fractal and statistical surface parameters for characterization of data distortion caused by inappropriate choice of scanning rate.

16.
Microsc Res Tech ; 79(12): 1208-1213, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27639345

ABSTRACT

This work analyses the three-dimensional (3-D) surface texture of carbon-nickel (C-Ni) films grown by radio frequency (RF) magnetron co-sputtering on glass substrates. The C-Ni thin films were deposited under different deposition times, from 50 to 600 s, at room temperature. Atomic force microscopy was employed to characterize the 3-D surface texture data in connection with the statistical, and fractal analyses. It has been found that up to 180 s the sputtering occurs in more metal content mode and in greater than 180 s it occurs in more non-metal content mode. This behavior demonstrated a strong link between the structural and morphological properties of C-Ni composite films and facilitates a deeper understanding of structure/property relationships and surface defects in prepared samples. Furthermore, these findings can be applied to research on the mechanisms to prepare and control high-quality C-Ni films.

17.
J Phys Chem B ; 119(17): 5662-70, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25839675

ABSTRACT

In the present work three-dimensional (3-D) surface topography of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with constant thickness of Cu and three thicknesses of Ni prepared by RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) system were investigated. The thin films of Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni deposited by radio frequency (RF)-sputtering and RF-PECVD systems, were characterized. To determine the mass thickness and atomic structure of the films, the Rutherford backscattering spectroscopy (RBS) spectra was applied. The absorption spectra were applied to study localized surface plasmon resonance (LSPR) peaks of Cu-Ni NPs (observed around 608 nm in visible spectra), which is widened and shifted to lower wavelengths as the thickness of Ni over layer increases, and their changes are also evaluated by the 3-D surface topography. These nanostructures were investigated over square areas of 1 µm × 1 µm using atomic force microscopy (AFM) and multifractal analysis. Topographic characterization of surface samples (in amplitude, spatial distribution, and pattern of surface characteristics) highlighted 3-D surfaces with multifractal features which can be quantitatively estimated by the multifractal measures. The 3-D surface topography Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni prepared by RF-PECVD system can be characterized using the multifractal geometry in correlation with the surface statistical parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...