Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
APL Bioeng ; 8(1): 011502, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449522

ABSTRACT

Within the tumor microenvironment (TME), tumor cells are exposed to numerous mechanical forces, both internally and externally, which contribute to the metastatic cascade. From the initial growth of the tumor to traveling through the vasculature and to the eventual colonization of distant organs, tumor cells are continuously interacting with their surroundings through physical contact and mechanical force application. The mechanical forces found in the TME can be simplified into three main categories: (i) shear stress, (ii) tension and strain, and (iii) solid stress and compression. Each force type can independently impact tumor growth and progression. Here, we review recent bioengineering strategies, which have been employed to establish the connection between mechanical forces and tumor progression. While many cancers are explored in this review, we place great emphasis on cancers that are understudied in their response to mechanical forces, such as ovarian and colorectal cancers. We discuss the major steps of metastatic transformation and present novel, recent advances in model systems used to study how mechanical forces impact the study of the metastatic cascade. We end by summarizing systems that incorporate multiple forces to expand the complexity of our understanding of how tumor cells sense and respond to mechanical forces in their environment. Future studies would also benefit from the inclusion of time or the aspect of mechanical memory to further enhance this field. While the knowledge of mechanical forces and tumor metastasis grows, developing novel materials and in vitro systems are essential to providing new insight into predicting, treating, and preventing cancer progression and metastasis.

2.
J Biomed Mater Res B Appl Biomater ; 112(2): e35385, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345190

ABSTRACT

Insufficient healing of aneurysms following treatment with vascular occlusion devices put patients at severe risk of fatal rupture. Therefore, promoting healing and not just occlusion is vital to enhance aneurysm healing. Following occlusion device implantation, healing is primarily orchestrated by macrophage immune cells, ending with fibroblasts depositing collagen to stabilize the aneurysm neck and dome, preventing rupture. Several modified occlusion devices are available currently on-market. Previous in vivo work demonstrated that modifications of occlusion devices with a shape memory polymer foam had enhanced aneurysm healing outcomes. To better understand cellular response to occlusion devices and improve aneurysm occlusion device design variables, we developed an in vitro assay to isolate prominent interactions between devices and key healing players: macrophages and fibroblasts. We used THP-1 monocyte derived macrophages and human dermal fibroblasts in our cell culture models. Macrophages were allowed device contact with on-market competitor aneurysm occlusion devices for up to 96 h, to allow for any spontaneous device-driven macrophage activation. Macrophage secreted factors were captured in the culture media, in response to device-specific activation. Fibroblasts were then exposed to device-conditioned macrophage media (with secreted factors alone), to determine if there were any device-induced changes in collagen secretion. Our in vitro studies were designed to test the direct effect of devices on macrophage activation, and the indirect effect of devices on collagen secretion by fibroblasts to promote aneurysm healing and stabilization. Over 96 h, macrophages displayed significant migration toward and interaction with all tested devices. As compared to other devices, shape memory polymer foams (SMM, Shape Memory Medical) induced significant changes in gene expression indicating a shift toward an anti-inflammatory pro-healing M2-like phenotype. Similarly, macrophages in contact with SMM devices secreted more vascular endothelial growth factor (VEGF) compared with other devices. Macrophage conditioned media from SMM-contacted macrophages actively promoted fibroblast secretion of collagen, comparable to amounts observed with exogenous stimulation via VEGF supplementation. Our data indicate that SMM devices may promote good aneurysm healing outcomes, because collagen production is an essential step to ultimately stabilize an aneurysm.


Subject(s)
Aneurysm , Smart Materials , Humans , Vascular Endothelial Growth Factor A/metabolism , Macrophages/metabolism , Aneurysm/therapy , Collagen/metabolism , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Smart Materials/metabolism , Fibroblasts
3.
Cell Mol Bioeng ; 16(4): 261-281, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37811008

ABSTRACT

Introduction: In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression. Methods: We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes. Results: Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner. Conclusions: Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00776-w.

SELECTION OF CITATIONS
SEARCH DETAIL
...