Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1344, 2017.
Article in English | MEDLINE | ID: mdl-28848567

ABSTRACT

Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3-) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension.

2.
Protoplasma ; 254(2): 713-724, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27193139

ABSTRACT

The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.


Subject(s)
Cell Wall/metabolism , Cold Temperature , Osmosis , Pectins/metabolism , Plant Leaves/cytology , Zea mays/cytology , Antibodies, Monoclonal/metabolism , Biomass , Carboxylic Ester Hydrolases/metabolism , Cell Wall/ultrastructure , Inbreeding , Plant Leaves/ultrastructure , Sucrose/metabolism , Zea mays/ultrastructure
3.
BMC Genomics ; 17: 125, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26897027

ABSTRACT

BACKGROUND: Recent progress in selective breeding of maize (Zea mays L.) towards adaptation to temperate climate has allowed the production of inbred lines withstanding cold springs with temperatures below 8 °C or even close to 0 °C, indicating that despite its tropical origins maize is not inherently cold-sensitive. RESULTS: Here we studied the acclimatory response of three maize inbred lines of contrasting cold-sensitivity selected basing on multi-year routine field data. The field observations were confirmed in the growth chamber. Under controlled conditions the damage to the photosynthetic apparatus due to severe cold treatment was the least in the cold-tolerant line provided that it had been subjected to prior moderate chilling, i.e., acclimation. The cold-sensitive lines performed equally poorly with or without acclimation. To uncover the molecular basis of the attained cold-acclimatability we performed comparative transcriptome profiling of the response of the lines to the cold during acclimation phase by means of microarrays with a statistical and bioinformatic data analysis. CONCLUSIONS: The analyses indicated three mechanisms likely responsible for the cold-tolerance: acclimation-dependent modification of the photosynthetic apparatus, cell wall properties, and developmental processes. Those conclusions supported the observed acclimation of photosynthesis to severe cold at moderate chilling and were further confirmed by experimentally showing specific modification of cell wall properties and repression of selected miRNA species, general regulators of development, in the cold-tolerant line subjected to cold stress.


Subject(s)
Acclimatization , Cold Temperature , Zea mays/physiology , DNA, Plant/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant , Oligonucleotide Array Sequence Analysis , Photosynthesis , Plant Breeding , Promoter Regions, Genetic , Transcriptome , Zea mays/genetics
4.
Ann Bot ; 101(4): 521-30, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18222909

ABSTRACT

BACKGROUND AND AIMS: The hypothesis was tested that pectin content and methylation degree participate in regulation of cell wall mechanical properties and in this way may affect tissue growth and freezing resistance over the course of plant cold acclimation and de-acclimation. METHODS: Experiments were carried on the leaves of two double-haploid lines of winter oil-seed rape (Brassica napus subsp. oleifera), differing in winter survival and resistance to blackleg fungus (Leptosphaeria maculans). KEY RESULTS: Plant acclimation in the cold (2 degrees C) brought about retardation of leaf expansion, concomitant with development of freezing resistance. These effects were associated with the increases in leaf tensile stiffness, cell wall and pectin contents, pectin methylesterase (EC 3.1.1.11) activity and the low-methylated pectin content, independently of the genotype studied. However, the cold-induced modifications in the cell wall properties were more pronounced in the leaves of the more pathogen-resistant genotype. De-acclimation promoted leaf expansion and reversed most of the cold-induced effects, with the exception of pectin methylesterase activity. CONCLUSIONS: The results show that the temperature-dependent modifications in pectin content and their methyl esterification degree correlate with changes in tensile strength of a leaf tissue, and in this way affect leaf expansion ability and its resistance to freezing and to fungus pathogens.


Subject(s)
Acclimatization/physiology , Brassica napus/metabolism , Cell Wall/physiology , Pectins/metabolism , Plant Leaves/metabolism , Ascomycota/physiology , Biomechanical Phenomena , Brassica napus/microbiology , Brassica napus/physiology , Carboxylic Ester Hydrolases/metabolism , Cell Enlargement , Esterification , Freezing , Genotype , Plant Diseases , Plant Leaves/growth & development , Plant Leaves/physiology
SELECTION OF CITATIONS
SEARCH DETAIL