Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628493

ABSTRACT

The Bacteroidetes type IX secretion system (T9SS) consists of at least 20 components that translocate proteins with type A or type B C-terminal domain (CTD) signals across the outer membrane (OM). While type A CTD proteins are anchored to the cell surface via covalent linkage to the anionic lipopolysaccharide, it is still unclear how type B CTD proteins are anchored to the cell surface. Moreover, very little is known about the PorE and PorP components of the T9SS. In this study, for the first time, we identified a complex comprising the OM ß-barrel protein PorP, the OM-associated periplasmic protein PorE and the type B CTD protein PG1035. Cross-linking studies supported direct interactions between PorE-PorP and PorP-PG1035. Furthermore, we show that the formation of the PorE-PorP-PG1035 complex was independent of PorU and PorV. Additionally, the Flavobacterium johnsoniae PorP-like protein, SprF, was found bound to the major gliding motility adhesin, SprB, which is also a type B CTD protein. Together, these results suggest that type B-CTD proteins may anchor to the cell surface by binding to their respective PorP-like proteins.


Subject(s)
Bacterial Proteins , Bacterial Secretion Systems , Adhesins, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Biological Transport , Membrane Proteins/metabolism , Protein Transport
2.
Adv Healthc Mater ; 10(24): e2101300, 2021 12.
Article in English | MEDLINE | ID: mdl-34655462

ABSTRACT

Impairment of the protein quality control network leads to the accumulation of unfolded and aggregated proteins. Direct detection of unfolded protein accumulation in the cells may provide the possibility for early diagnosis of neurodegenerative diseases. Here a new platform based on a peptide-conjugated thiol-reactive aggregation-induced emission fluorogen (AIEgen), named MI-BTD-P (or D1), for labeling and tracking unfolded proteins in cells is reported. In vitro experiments with model proteins show that the non-fluorescent D1 only becomes highly fluorescent when reacted with the thiol group of free cysteine (Cys) residues on unfolded proteins but not glutathione or folded proteins with buried or surface exposed Cys. When the labeled unfolded proteins form aggregates, D1 fluorescence intensity is further increased, and fluorescence lifetime is prolonged. D1 is then used to measure unfolded protein loads in cells by flow cytometry and track the aggregate formation of the D1 labeled unfolded proteins using confocal microscopy. In combination with fluorescence lifetime imaging technique, the proteome at different folding statuses can be better differentiated, demonstrating the versatility of this new platform. The rational design of D1 demonstrates the outlook of incorporation of diverse functional groups to achieve maximal sensitivity and selectivity in biological samples.


Subject(s)
Fluorescent Dyes , Sulfhydryl Compounds , Peptides , Protein Unfolding , Proteome
3.
Elife ; 102021 03 29.
Article in English | MEDLINE | ID: mdl-33779550

ABSTRACT

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Molecular Biology/methods , Single Molecule Imaging/methods , Molecular Biology/instrumentation , Single Molecule Imaging/instrumentation
4.
J Phys Chem A ; 123(13): 2789-2795, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30865457

ABSTRACT

Blue-light-emitting semiconductors based on polyfluorenes often exhibit an undesired green emission band. In this report, three well-defined oligofluorenes corresponding to three types of "defects" attributed to aggregation, keto formation, and chain entanglement, respectively, are systemically investigated to unveil the origins of the green emission band in fluorene-based materials. First, the optical properties of defect molecules in different states are studied. The defect associated with aggregation is absent in dilute solutions and in films doped at 0.01 wt % with poly(methyl methacrylate). Second, the dependence of the emission spectra on the solvent was monitored to compare the effects of the "keto-" and "chain-entanglement defect" molecules. The green emission of keto defects exhibited a strong dependence on solvent polarity, whereas this cannot be observed in case of chain-entanglement defect. Third, energy transfer between poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]- co-[5-(octyloxy)-9,9-diphenyl-fluoren-2,7-diyl] and the keto or chain-entanglement defect molecules is illustrated. Compared to those of the chain-entanglement defect, the spectra of the keto defect molecule (1:10-3) show signs of defect emission at lower proportions. These investigations not only provide insight into the photophysics of oligofluorenes but also supply a new strategy to explore defects in semiconductor polymers, which will aid in the development of effective approaches to obtain stable, pure blue organic light-emitting diodes based on polyfluorenes.

5.
J Phys Chem Lett ; 9(2): 364-372, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29298074

ABSTRACT

We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (ß-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene ß-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) ß-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures. Besides, ß-conformational regions have larger fluorescence anisotropy for the low molecular rotational motion and high chain orientation, while the low anisotropy in glassy conformational regions shows more rotational freedom of the chain and efficient energy migration from amorphous regions to ß-conformation as a whole. Finally, ultrastable ASE threshold in the PODPF ß-conformational films also confirms its potential application in organic lasers. In this regard, FLIM and FAIM measurements provide an effective platform to explore the fundamental photophysical process of conformational transitions in conjugated polymer.

6.
Phys Chem Chem Phys ; 19(30): 19984-19991, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28722049

ABSTRACT

The spectroscopic properties of poly(methyl methacrylate) polymer films doped with two kinds of photochromic molecular switches are investigated. A green-fluorescent sulfonyl diarylethene (P1) is combined with either a non-fluorescent diarylethene (P2) or red-fluorescent spiropyran (P3). Photoswitching between the colorless and colored isomers (P1: o-BTFO4 ↔ c-BTFO4, P2: o-DTE ↔ c-DTE, P3: SP ↔ MC) enables the P1 + P2 and P1 + P3 films to be cycled through three distinct states. From the initial state (o-BTFO4 + o-DTE/SP), irradiation with UV light generates the second state (c-BTFO4 + c-DTE/MC), where c-BTFO4 → c-DTE/MC energy transfer is established. Irradiation with green light then generates the third state (c-BTFO4 + o-DTE/SP), where the energy transfer acceptor is no longer present. Finally, irradiation with blue light regenerates the initial state. For the P1 + P2 film, only one state is fluorescent, with the irradiation inputs required to be entered in the correct order to access this state, acting as a keypad lock. For the P1 + P3 film, the states emit either no fluorescence, red fluorescence, or green fluorescence, all using a common excitation wavelength. Additionally, once the fluorescence is activated with UV light, it undergoes a time-dependent color transition from red to green, due to the pairing of P-type and T-type photochromes. These multi-photochromic systems may be useful for security ink or imaging applications.

7.
Chem Commun (Camb) ; 53(19): 2874-2877, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28220157

ABSTRACT

We report a new strategy that allows spatiotemporal visualization of the macromolecular crowding effect in cells. An amine-reactive aggregation-induced emission fluorogen is used to label proteins in the cytoplasm and the change in the protein mobility as well as local viscosity can be monitored by using fluorescence anisotropy imaging and fluorescence lifetime imaging, respectively.


Subject(s)
Amines/chemistry , Fluorescence Polarization , Fluorescent Dyes/chemistry , Amines/chemical synthesis , Animals , Cell Line , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Macromolecular Substances/chemistry , Mice , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...