Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 172: 105777, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152795

ABSTRACT

Pathogenic microorganisms are responsible for many diseases in biological organisms, including humans. Many of these infections thrive in hospitals, where people are treated with medicines and certain bacteria resist those treatments. Consequently, this research article aims to develop efficient antimicrobial material-based conjugated and functionalized polypropargyl alcohol nanoparticles (nano-PGA) synthesized by gamma irradiation. The monomer of PGA was polymerized in various mediums (water (W), chloroform (Ch), and dimethylformamide (DMF)) without catalysts under the action of γ-rays, producing π-conjugated and colored functional nano-PGA polymers. Nano-PGA is a versatile polymer demonstrated here as suitable for creating next-generation of antimicrobial systems capable of effectively preventing and killing various pathogenic microorganisms. The novelty here is the development of polymeric nanostructures by changing the solvent and irradiation doses. The antimicrobial property of nano-PGA (nanostare-like antibody structure) was examined against different pathogenic bacteria and unicellular fungi. Nano-PGA-DMF exhibits significant antimicrobial potential against Staphylococcus aureus (S. aureus) (20.20 mm; zone of inhibition (ZOI), and 0.47 µg/mL; minimum inhibitory concentration (MIC), followed by Escherichia coli (E. coli) (14.50 mm; ZOI, and 1.87 µg/mL; MIC, and Candida albicans (C.albicans) (12.50 mm; ZOI, and 1.87 µg/mL; MIC). In antibiofilm results, the highest inhibition percentage of the synthesized nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF was documented for S. aureus (17.01%, 37.57%, and 80.27%), followed by E. coli (25.68%, 55.16% and 78.11%), and C.albicans (40.10%, 62.65%, and 76.19%), respectively. The amount of bacterial protein removed is directly proportional after increasing the concentration of nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF samples (at different concentrations) and counted to be 70.58, 102.89, and 200.87 µg/mL, respectively following the treatment with 1.0 mg/mL of each sample. It was found that the nano-PGA polymer prepared in DMF has better antimicrobial activity than one prepared in chloroform than in water.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Bacterial Proteins , Candida albicans , Escherichia coli , Microbial Sensitivity Tests , Polymers , Drug Resistance, Multiple, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...