Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 121, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013215

ABSTRACT

HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/therapy , HIV-1/drug effects , Killer Cells, Natural/immunology , Protein Kinase Inhibitors/pharmacology , Viremia/therapy , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/virology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Coculture Techniques , Female , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Killer Cells, Natural/transplantation , Male , Mice , Mice, Transgenic , Protein Kinase C/genetics , Protein Kinase C/immunology , Spleen/drug effects , Spleen/immunology , Spleen/virology , Viral Load/drug effects , Viremia/genetics , Viremia/immunology , Viremia/virology , Virus Latency/drug effects , Virus Replication/drug effects
2.
Cell Rep Med ; 1(9): 100162, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33377133

ABSTRACT

HIV latency prevents cure of infection with antiretroviral therapy (ART) alone. One strategy for eliminating latently infected cells involves the induction of viral protein expression via latency-reversing agents (LRAs), allowing killing of host cells by viral cytopathic effects or immune effector mechanisms. Here, we combine a barcoded HIV approach and a humanized mouse model to study the effects of a designed, synthetic protein kinase C modulating LRA on HIV rebound. We show that administration of this compound during ART results in a delay in rebound once ART is stopped. Furthermore, the rebounding virus appears composed of a smaller number of unique barcoded viruses than occurs in control-treated animals, suggesting that some reservoir cells that would have contributed virus to the rebound process are eliminated by LRA administration. These data support the use of barcoded virus to study rebound and suggest that LRAs may be useful in HIV cure efforts.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Virus Latency/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , Humans , Mice , Protein Kinase C/pharmacology , Virus Activation/drug effects , Virus Replication/drug effects
3.
Cell Rep Med ; 1(3): 100037, 2020 06 23.
Article in English | MEDLINE | ID: mdl-33205060

ABSTRACT

"Shock and kill" strategies focus on purging the latent HIV-1 reservoir by treating infected individuals with therapeutics that activate the latent virus and subsequently eliminating infected cells. We have previously reported that induction of non-canonical nuclear factor κB (NF-κB) signaling through a class of small-molecule antagonists known as Smac mimetics can reverse HIV-1 latency. Here, we describe the development of Ciapavir (SBI-0953294), a molecule specifically optimized for HIV-1 latency reversal that was found to be more efficacious as a latency-reversing agent than other Smac mimetics under clinical development for cancer. Critically, this molecule induced activation of HIV-1 reservoirs in vivo in a bone marrow, liver, thymus (BLT) humanized mouse model without mediating systemic T cell activation. This study provides proof of concept for the in vivo efficacy and safety of Ciapavir and indicates that Smac mimetics can constitute a critical component of a safe and efficacious treatment strategy to eliminate the latent HIV-1 reservoir.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Virus Latency/drug effects , Animals , Bone Marrow/drug effects , Cells, Cultured , HIV Infections/metabolism , HIV Seropositivity/drug therapy , Humans , Liver/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Small Molecule Libraries/pharmacology , T-Lymphocytes/drug effects , Thymus Gland/drug effects , Virus Activation/drug effects , Virus Replication/drug effects
4.
Proc Natl Acad Sci U S A ; 117(20): 10688-10698, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371485

ABSTRACT

AIDS is a pandemic disease caused by HIV that affects 37 million people worldwide. Current antiretroviral therapy slows disease progression but does not eliminate latently infected cells, which resupply active virus, thus necessitating lifelong treatment with associated compliance, cost, and chemoexposure issues. Latency-reversing agents (LRAs) activate these cells, allowing for their potential clearance, thus presenting a strategy to eradicate the infection. Protein kinase C (PKC) modulators-including prostratin, ingenol esters, bryostatin, and their analogs-are potent LRAs in various stages of development for several clinical indications. While LRAs are promising, a major challenge associated with their clinical use is sustaining therapeutically meaningful levels of the active agent while minimizing side effects. Here we describe a strategy to address this problem based on LRA prodrugs, designed for controllable release of the active LRA after a single injection. As intended, these prodrugs exhibit comparable or superior in vitro activity relative to the parent compounds. Selected compounds induced higher in vivo expression of CD69, an activation biomarker, and, by releasing free agent over time, significantly improved tolerability when compared to the parent LRAs. More generally, selected prodrugs of PKC modulators avoid the bolus toxicities of the parent drug and exhibit greater efficacy and expanded tolerability, thereby addressing a longstanding objective for many clinical applications.


Subject(s)
Anti-HIV Agents/pharmacology , Bryostatins/pharmacology , HIV Infections/virology , HIV-1/drug effects , Prodrugs/pharmacology , Protein Kinase C/metabolism , Virus Latency/drug effects , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/therapeutic use , Bryostatins/chemical synthesis , Bryostatins/therapeutic use , Cell Line, Tumor , Cells, Cultured , Diterpenes/chemistry , HIV Infections/drug therapy , HIV-1/physiology , Humans , Mice , Mice, Inbred C57BL , Phorbol Esters/chemistry , Prodrugs/chemical synthesis , Prodrugs/therapeutic use , Protein Kinase C/drug effects
5.
Nat Commun ; 11(1): 1879, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312992

ABSTRACT

Bryostatin 1 is a marine natural product under investigation for HIV/AIDS eradication, the treatment of neurological disorders, and enhanced CAR T/NK cell immunotherapy. Despite its promising activity, bryostatin 1 is neither evolved nor optimized for the treatment of human disease. Here we report the design, synthesis, and biological evaluation of several close-in analogs of bryostatin 1. Using a function-oriented synthesis approach, we synthesize a series of bryostatin analogs designed to maintain affinity for bryostatin's target protein kinase C (PKC) while enabling exploration of their divergent biological functions. Our late-stage diversification strategy provides efficient access to a library of bryostatin analogs, which per our design retain affinity for PKC but exhibit variable PKC translocation kinetics. We further demonstrate that select analogs potently increase cell surface expression of CD22, a promising CAR T cell target for the treatment of leukemias, highlighting the clinical potential of bryostatin analogs for enhancing targeted immunotherapies.


Subject(s)
Bryostatins/biosynthesis , Bryostatins/pharmacology , Immunotherapy/methods , Neoplasms/drug therapy , Protein Kinase C/metabolism , Bryostatins/chemistry , Cell Line, Tumor , Humans , Leukemia/drug therapy , Models, Molecular , Sialic Acid Binding Ig-like Lectin 2/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...