Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11533, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773170

ABSTRACT

Tauopathies, including Alzheimer's disease and Frontotemporal Dementia, are debilitating neurodegenerative disorders marked by cognitive decline. Despite extensive research, achieving effective treatments and significant symptom management remains challenging. Accurate diagnosis is crucial for developing effective therapeutic strategies, with hyperphosphorylated protein units and tau oligomers serving as reliable biomarkers for these conditions. This study introduces a novel approach using nanotechnology to enhance the diagnostic process for tauopathies. We developed humanized ferritin nanocages, a novel nanoscale delivery system, designed to encapsulate and transport a tau-specific fluorophore, BT1, into human retinal cells for detecting neurofibrillary tangles in retinal tissue, a key marker of tauopathies. The delivery of BT1 into living cells was successfully achieved through these nanocages, demonstrating efficient encapsulation and delivery into retinal cells derived from human induced pluripotent stem cells. Our experiments confirmed the colocalization of BT1 with pathological forms of tau in living retinal cells, highlighting the method's potential in identifying tauopathies. Using ferritin nanocages for BT1 delivery represents a significant contribution to nanobiotechnology, particularly in neurodegenerative disease diagnostics. This method offers a promising tool for the early detection of tau tangles in retinal tissue, with significant implications for improving the diagnosis and management of tauopathies. This study exemplifies the integration of nanotechnology with biomedical science, expanding the frontiers of nanomedicine and diagnostic techniques.


Subject(s)
Ferritins , Retina , Tauopathies , tau Proteins , Humans , tau Proteins/metabolism , Ferritins/metabolism , Retina/metabolism , Retina/pathology , Tauopathies/metabolism , Tauopathies/pathology , Tauopathies/diagnosis , Induced Pluripotent Stem Cells/metabolism , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology
2.
Life (Basel) ; 12(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431019

ABSTRACT

Maintaining the excitability of neurons and circuits is fundamental for healthy brain functions. The global compensatory increase in excitatory synaptic strength, in response to decreased activity, is one of the main homeostatic mechanisms responsible for such regulation. This type of plasticity has been extensively characterized in rodents in vivo and in vitro, but few data exist on human neurons maturation. We have generated an in vitro cortical model system, based on differentiated human-induced pluripotent stem cells, chronically treated with tetrodotoxin, to investigate homeostatic plasticity at different developmental stages. Our findings highlight the presence of homeostatic plasticity in human cortical networks and show that the changes in synaptic strength are due to both pre- and post-synaptic mechanisms. Pre-synaptic plasticity involves the potentiation of neurotransmitter release machinery, associated to an increase in synaptic vesicle proteins expression. At the post-synaptic level, we report an increase in the expression of post-synaptic density proteins, involved in glutamatergic receptor anchoring. These results extend our understanding of neuronal homeostasis and reveal the developmental regulation of its expression in human cortical networks. Since induced pluripotent stem cell-derived neurons can be obtained from patients with neurodevelopmental and neurodegenerative diseases, our platform offers a versatile model for assessing human neural plasticity under physiological and pathological conditions.

3.
Sci Rep ; 12(1): 5257, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347170

ABSTRACT

Numerous studies have shown a strong correlation between the number of neurofibrillary tangles of the tau protein and Alzheimer's disease progression, making the quantitative detection of tau very promising from a clinical point of view. However, the lack of highly reliable fluorescent probes for selective imaging of tau neurofibrillary tangles is a major challenge due to sharing similar ß-sheet motifs with homologous Amyloid-ß fibrils. In the current work, we describe the rational design and the in silico evaluation of a small-size focused library of fluorescent probes, consisting of a BODIPY core (electron acceptor) featuring highly conjugated systems (electron donor) with a length in the range 13-19 Å at C3. Among the most promising probes in terms of binding mode, theoretical affinity and polarity, BT1 has been synthesized and tested in vitro onto human induced pluripotent stem cells derived neuronal cell cultures. The probe showed excellent photophysical properties and high selectivity allowing in vitro imaging of hyperphosphorylated tau protein filaments with minimal background noise. Our findings offer new insight into the structure-activity relationship of this class of tau selective fluorophores, paving the way for boosting tau tangle detection in patients possibly through retinal spectral scans.


Subject(s)
Induced Pluripotent Stem Cells , Boron Compounds , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , tau Proteins/metabolism
5.
Cell Death Dis ; 12(5): 498, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33993189

ABSTRACT

Fragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines. Phenotypical and functional characterization of cortical neurons derived from FMRP-deficient hiPSCs display altered gene expression and impaired differentiation when compared with the healthy counterpart. FXS cortical cultures show an increased number of GFAP positive cells, likely astrocytes, increased spontaneous network activity, and depolarizing GABAergic transmission. Cortical brain organoid models show an increased number of glial cells, and bigger organoid size. Our findings demonstrate that FMRP is required to correctly support neuronal and glial cell proliferation, and to set the correct excitation/inhibition ratio in human brain development.


Subject(s)
Brain/diagnostic imaging , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Cell Differentiation , Fragile X Mental Retardation Protein/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism
6.
Front Neurosci ; 14: 655, 2020.
Article in English | MEDLINE | ID: mdl-32625060

ABSTRACT

Recent progress in tissue engineering has led to increasingly complex approaches to investigate human neurodegenerative diseases in vitro, such as Alzheimer's disease, aiming to provide more functional and physiological models for the study of their pathogenesis, and possibly the identification of novel diagnostic biomarkers and therapeutic targets. Induced pluripotent stem cell-derived cortical and retinal organoids represent a novel class of in vitro three-dimensional models capable to recapitulate with a high similarity the structure and the complexity of the native brain and retinal tissues, thus providing a framework for better mimicking in a dish the patient's disease features. This review aims to discuss progress made over the years in the field of in vitro three-dimensional cell culture systems, and the benefits and disadvantages related to a possible application of organoids for the study of neurodegeneration associated with Alzheimer's disease, providing a promising breakthrough toward a personalized medicine approach and the reduction in the use of humanized animal models.

7.
Am J Physiol Cell Physiol ; 319(3): C465-C480, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32639873

ABSTRACT

Bioprinting aims to direct the spatial arrangement in three dimensions of cells, biomaterials, and growth factors. The biofabrication of clinically relevant constructs for the repair or modeling of either diseased or damaged tissues is rapidly advancing, resulting in the ability to three-dimensional (3D) print biomimetic platforms which imitate a large number of tissues in the human body. Primary tissue-specific cells are typically isolated from patients and used for the fabrication of 3D models for drug screening or tissue repair purposes. However, the lack of resilience of these platforms, due to the difficulties in harnessing, processing, and implanting patient-specific cells can limit regeneration ability. The printing of stem cells obviates these hurdles, producing functional in vitro models or implantable constructs. Advancements in biomaterial science are helping the development of inks suitable for the encapsulation and the printing of stem cells, promoting their functional growth and differentiation. This review specifically aims to investigate the most recent studies exploring innovative and functional approaches for the printing of 3D constructs to model disease or repair damaged tissues. Key concepts in tissue physiology are highlighted, reporting stem cell applications in biofabrication. Bioprinting technologies and biomaterial inks are listed and analyzed, including recent advancements in biomaterial design for bioprinting applications, commenting on the influence of biomaterial inks on the encapsulated stem cells. Ultimately, most recent successful efforts and clinical potentials for the manufacturing of functional physiological tissue substitutes are reported here, with a major focus on specific tissues, such as vasculature, heart, lung and airways, liver, bone and muscle.


Subject(s)
Bioprinting , Stem Cells/cytology , Tissue Engineering , Bioprinting/methods , Cell Differentiation/physiology , Humans , Ink , Organ Culture Techniques/methods , Tissue Engineering/methods
8.
J Clin Med ; 8(10)2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31581732

ABSTRACT

Bioprinting techniques use bioinks made of biocompatible non-living materials and cells to build 3D constructs in a controlled manner and with micrometric resolution. 3D bioprinted structures representative of several human tissues have been recently produced using cells derived by differentiation of induced pluripotent stem cells (iPSCs). Human iPSCs can be differentiated in a wide range of neurons and glia, providing an ideal tool for modeling the human nervous system. Here we report a neural construct generated by 3D bioprinting of cortical neurons and glial precursors derived from human iPSCs. We show that the extrusion-based printing process does not impair cell viability in the short and long term. Bioprinted cells can be further differentiated within the construct and properly express neuronal and astrocytic markers. Functional analysis of 3D bioprinted cells highlights an early stage of maturation and the establishment of early network activity behaviors. This work lays the basis for generating more complex and faithful 3D models of the human nervous systems by bioprinting neural cells derived from iPSCs.

9.
J Vis Exp ; (147)2019 05 01.
Article in English | MEDLINE | ID: mdl-31107442

ABSTRACT

We describe here a method to obtain functional spinal and cranial motor neurons from human induced pluripotent stem cells (iPSCs). Direct conversion into motor neuron is obtained by ectopic expression of alternative modules of transcription factors, namely Ngn2, Isl1 and Lhx3 (NIL) or Ngn2, Isl1 and Phox2a (NIP). NIL and NIP specify, respectively, spinal and cranial motor neuron identity. Our protocol starts with the generation of modified iPSC lines in which NIL or NIP are stably integrated in the genome via a piggyBac transposon vector. Expression of the transgenes is then induced by doxycycline and leads, in 5 days, to the conversion of iPSCs into MN progenitors. Subsequent maturation, for 7 days, leads to homogeneous populations of spinal or cranial MNs. Our method holds several advantages over previous protocols: it is extremely rapid and simplified; it does not require viral infection or further MN isolation; it allows generating different MN subpopulations (spinal and cranial) with a remarkable degree of maturation, as demonstrated by the ability to fire trains of action potentials. Moreover, a large number of motor neurons can be obtained without purification from mixed populations. iPSC-derived spinal and cranial motor neurons can be used for in vitro modeling of Amyotrophic Lateral Sclerosis and other neurodegenerative diseases of the motor neuron. Homogeneous motor neuron populations might represent an important resource for cell type specific drug screenings.


Subject(s)
Cell Differentiation , Genetic Vectors/metabolism , Induced Pluripotent Stem Cells/cytology , Motor Neurons/cytology , Skull/cytology , Spinal Cord/cytology , Cell Differentiation/drug effects , Doxycycline/pharmacology , Gene Expression Regulation/drug effects , Genes, Homeobox , Humans , Plasmids/metabolism
10.
J Cell Sci ; 131(5)2018 03 08.
Article in English | MEDLINE | ID: mdl-29361543

ABSTRACT

Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Escherichia coli Proteins/genetics , Ion Channels/genetics , Mechanotransduction, Cellular/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Animals , Brain/growth & development , Brain/metabolism , Cell Survival/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Ion Channel Gating/genetics , Nerve Net/growth & development , Nerve Net/metabolism , Patch-Clamp Techniques , Primary Cell Culture , Protein Engineering/methods , Rats , Transfection
11.
Molecules ; 21(8)2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27527143

ABSTRACT

The technological advancement of optical approaches, and the growth of their applications in neuroscience, has allowed investigations of the physio-pathology of neural networks at a single cell level. Therefore, better understanding the role of single neurons in the onset and progression of neurodegenerative conditions has resulted in a strong demand for surgical tools operating with single cell resolution. Optical systems already provide subcellular resolution to monitor and manipulate living tissues, and thus allow understanding the potentiality of surgery actuated at single cell level. In the present work, we report an in vitro experimental model of minimally invasive surgery applied on neuronal cultures expressing a genetically encoded calcium sensor. The experimental protocol entails the continuous monitoring of the network activity before and after the ablation of a single neuron, to provide a robust evaluation of the induced changes in the network activity. We report that in subpopulations of about 1000 neurons, even the ablation of a single unit produces a reduction of the overall network activity. The reported protocol represents a simple and cost effective model to study the efficacy of single-cell surgery, and it could represent a test-bed to study surgical procedures circumventing the abrupt and complete tissue removal in pathological conditions.


Subject(s)
Laser Therapy/methods , Nerve Net/surgery , Neurons/cytology , Single-Cell Analysis/methods , Ablation Techniques/instrumentation , Ablation Techniques/methods , Animals , Calcium/metabolism , Cells, Cultured , Laser Therapy/instrumentation , Minimally Invasive Surgical Procedures , Models, Biological , Nerve Net/pathology , Neurons/metabolism , Neurosurgical Procedures , Rats
12.
Front Neurosci ; 10: 101, 2016.
Article in English | MEDLINE | ID: mdl-27013962

ABSTRACT

Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...