Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Article in English | MEDLINE | ID: mdl-38771086

ABSTRACT

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Subject(s)
Animal Migration , Climate Change , Nesting Behavior , Seasons , Animals , Arctic Regions , Animal Migration/physiology , Female , Charadriiformes/physiology , Reproduction
2.
PLoS One ; 18(2): e0281827, 2023.
Article in English | MEDLINE | ID: mdl-36795774

ABSTRACT

Large gulls are generalist predators that play an important role in Arctic food webs. Describing the migratory patterns and phenology of these predators is essential to understanding how Arctic ecosystems function. However, from all six large Arctic gull taxa, including three long-distance migrants, to date seasonal movements have been studied only in three and with small sample sizes. To document the flyways and migratory behaviour of the Vega gull, a widespread but little-studied Siberian migrant, we monitored 28 individuals with GPS loggers over a mean period of 383 days. Birds used similar routes in spring and autumn, preferring coastal to inland or offshore routes, and travelled 4000-5500 km between their breeding (Siberia) and wintering grounds (mainly the Republic of Korea and Japan). Spring migration mainly occurred in May, and was twice as fast and more synchronized among individuals than autumn migration. Migration bouts mainly occurred during the day and twilight, but rates of travel were always higher during the few night flights. Flight altitudes were nearly always higher during migration bouts than during other bouts, and lower during twilight than during night or day. Altitudes above 2000m were recorded during migrations, when birds made non-stop inland flights over mountain ranges and vast stretches of the boreal forest. Individuals showed high inter-annual consistency in their movements in winter and summer, indicating strong site fidelity to their breeding and wintering sites. Within-individual variation was similar in spring and autumn, but between individual variation was higher in autumn than in spring. Compared to previous studies, our results suggest that the timing of spring migration in large Arctic gulls is likely constrained by snowmelt at breeding grounds, while the duration of migration windows could be related to the proportion of inland versus coastal habitats found along their flyways ('fly-and-forage' strategy). Ongoing environmental changes are hence likely in short term to alter the timing of their migration, and in long term possibly affect the duration if e.g. the resource availability along the route changes in the future.


Subject(s)
Charadriiformes , Animals , Ecosystem , Animal Migration , Birds , Seasons
3.
PLoS One ; 17(8): e0270957, 2022.
Article in English | MEDLINE | ID: mdl-35925977

ABSTRACT

Determining the dynamics of where and when individuals occur is necessary to understand population declines and identify critical areas for populations of conservation concern. However, there are few examples where a spatially and temporally explicit model has been used to evaluate the migratory dynamics of a bird population across its entire annual cycle. We used geolocator-derived migration tracks of 84 Dunlin (Calidris alpina) on the East Asian-Australasian Flyway (EAAF) to construct a migratory network describing annual subspecies-specific migration patterns in space and time. We found that Dunlin subspecies exhibited unique patterns of spatial and temporal flyway use. Spatially, C. a. arcticola predominated in regions along the eastern edge of the flyway (e.g., western Alaska and central Japan), whereas C. a. sakhalina predominated in regions along the western edge of the flyway (e.g., N China and inland China). No individual Dunlin that wintered in Japan also wintered in the Yellow Sea, China seas, or inland China, and vice-versa. However, similar proportions of the 4 subspecies used many of the same regions at the center of the flyway (e.g., N Sakhalin Island and the Yellow Sea). Temporally, Dunlin subspecies staggered their south migrations and exhibited little temporal overlap among subspecies within shared migration regions. In contrast, Dunlin subspecies migrated simultaneously during north migration. South migration was also characterized by individuals stopping more often and for more days than during north migration. Taken together, these spatial-temporal migration dynamics indicate Dunlin subspecies may be differentially affected by regional habitat change and population declines according to where and when they occur. We suggest that the migration dynamics presented here are useful for guiding on-the-ground survey efforts to quantify subspecies' use of specific sites, and to estimate subspecies' population sizes and long-term trends. Such studies would significantly advance our understanding of Dunlin space-time dynamics and the coordination of Dunlin conservation actions across the EAAF.


Subject(s)
Animal Migration , Charadriiformes , Animals , Birds , Ecosystem , Humans , Seasons
4.
Ambio ; 49(3): 786-800, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31332767

ABSTRACT

Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.


Subject(s)
Arvicolinae , Ecosystem , Animals , Arctic Regions , Canada , Population Dynamics , Russia
6.
Science ; 364(6445)2019 06 14.
Article in English | MEDLINE | ID: mdl-31196986

ABSTRACT

Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


Subject(s)
Climate Change , Nesting Behavior , Animals , Arctic Regions , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...