Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Pharm Dev Technol ; 29(3): 212-220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38392961

ABSTRACT

The current budesonide formulations are inadequate for addressing left-sided colitis, and patients might hesitate to use an enema for a prolonged time. This study focuses on developing a single-layer coating for budesonide pellets targeting the descending colon. Pellets containing budesonide (1.5%w/w), PVP K30 (5%w/w), lactose monohydrate (25%w/w) and Avicel pH 102 (68.5%w/w) were prepared using extrusion spheronization technique. Coating formulations were designed using response surface methodology with pH and time-dependent Eudragits. Dissolution tests were conducted at different pH levels (1.2, 6.5, 6.8, and 7.2). Optimal coating formulation, considering coating level and the Eudragit (S + L) ratio to the total coating weight, was determined. Budesonide pellets were coated with the optimized composition and subjected to continuous dissolution testing simulating the gastrointestinal tract. The coating, with 48% S, 12% L, and 40% RS at a 10% coating level, demonstrated superior budesonide delivery to the descending colon. Coated pellets had a spherical shape with a uniform 30 µm thickness coating, exhibiting pH and time-dependent release. Notably, zero-order release kinetics was observed for the last 9 h in colonic conditions. The study suggests that an optimized single-layer coating, incorporating pH and time-dependent polymers, holds promise for consistently delivering budesonide to the descending colon.


Subject(s)
Budesonide , Drug Delivery Systems , Polymethacrylic Acids , Humans , Colon , Colon, Descending , Solubility , Drug Implants
2.
Am J Physiol Cell Physiol ; 325(4): C885-C894, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37642242

ABSTRACT

Transglutaminases (TGs) are a family of protein cross-linking enzymes that are capable of stiffening and insolubilizing proteins and creating protein networks, and thereby altering biological functions of proteins. Their role in fibrosis progression has been widely investigated with a focus on kidney, lung, liver, and heart where activity is triggered by various stimuli including hypoxia, inflammation, and hyperglycemia. TG2 has been considered one of the key enzymes in the pathogenesis of fibrosis mainly through transforming growth factor beta (TGF-beta) signaling and matrix cross-linking mechanisms. Although TG2 has been most widely studied in this context, the involvement of other TGs, TG1 and Factor XIII-A (FXIII-A), is beginning to emerge. This mini-review highlights the major steps taken in the TG and fibrosis research and summarizes the most recent advances and contributions of TG2, TG1, and FXIII-A to the progression of fibrosis in various animal models. Also, their mechanisms of action as well as therapeutic prospects are discussed.


Subject(s)
Hyperglycemia , Transglutaminases , Animals , Liver , Hypoxia , Fibrosis
3.
Nanomedicine ; 45: 102588, 2022 09.
Article in English | MEDLINE | ID: mdl-35905843

ABSTRACT

Nanomaterial-based drug delivery has opened new horizons in cancer therapy. This study aimed to investigate the in vitro and in vivo anti-cancer effects of a hyaluronic acid (HA)-targeted nanocarrier based on hollow silica nanoparticles (HSNPs), gated with peptide nucleic acid (PNA) and ATP aptamer (ATPApt) and loaded with doxorubicin (DOX). After formulation of a smart drug delivery nanosystem (HSNPs/DOX/ATPApt/PNA/HA), drug release, cytotoxicity, uptake, and in vivo anti-tumor properties were studied. Drug release test showed the controlled release of encapsulated DOX in response to ATP content. MTT and flow cytometry indicated that HA could improve both cytotoxicity and cellular uptake of the formulation. Moreover, HA-targeted formulation enhanced both the survival rate and tumor inhibition in the tumor-bearing mice compared with free DOX (P < 0.05). Our findings confirmed that HA-targeted nanoformulation, gated with PNA/aptamer and loaded with DOX can provide a novel therapeutic platform with great potential for cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Peptide Nucleic Acids , Adenosine Triphosphate/pharmacology , Animals , Delayed-Action Preparations/pharmacology , Dimaprit/analogs & derivatives , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Drug Liberation , Hyaluronic Acid/chemistry , Mice , Nanoparticles/chemistry , Neoplasms/drug therapy , Silicon Dioxide/chemistry
4.
J Environ Health Sci Eng ; 20(1): 495-507, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669815

ABSTRACT

Air pollution is one of the most pressing issues in populated Middle Eastern cities, in particular for the city of Ahvaz, Iran, imposing deleterious effects on the environment, public health, economy, culture, and other sectors. In this study, we investigate the relationship between meteorological parameters, PM10, AOD, air mass source origin, and visibility during severe desert dust storms (Average3h PM10 > 3200 µg m-3) between 2009 and 2012. Six of seven such events occurred between February and March. Interestingly, for the seven cases there was always an alarming PM10 mass concentration peak (137-553 µg m-3) between 12:00-18:00 (local time) that was 18-24 h before the dominant peak of the storm (3279-4899 µg m-3). The maximum wind speed over the multi-day periods examined for the dust storms is usually observed 6 h before the alarming PM10 peak. The minimum relative humidity, dew point temperature and air pressure occurred ± 3 h around the time of the alarming PM10 peak. Wind speed was the meteorological parameter that was consistently higher around the time of the first peak as compared to the second peak, with the reverse being true for sea level pressure. Based on four years of daily data in Ahvaz, PM10 was positively correlated with wind speed and air temperature and inversely correlated with sea level pressure and RH. An empirically-derived equation with R2 = 0.95 is reported to estimate the maximum PM10 concentration for severe desert dust events in the study region based on meteorological parameters. Finally, AOD is shown to correlate strongly (R2 = 0.86) with PM10 during periods with severe desert dust storms in the region.

5.
RSC Adv ; 12(9): 5184-5213, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35425537

ABSTRACT

Bio-electro-Fenton (BEF) systems have been potentially studied as a promising technology to achieve environmental organic pollutants degradation and bioelectricity generation. The BEF systems are interesting and constantly expanding fields of science and technology. These emerging technologies, coupled with anodic microbial metabolisms and electrochemical Fenton's reactions, are considered suitable alternatives. Recently, great attention has been paid to BEFs due to special features such as hydrogen peroxide generation, energy saving, high efficiency and energy production, that these features make BEFs outstanding compared with the existing technologies. Despite the advantages of this technology, there are still problems to consider including low production of current density, chemical requirement for pH adjustment, iron sludge formation due to the addition of iron catalysts and costly materials used. This review has described the general features of BEF system, and introduced some operational parameters affecting the performance of BEF system. In addition, the results of published researches about the degradation of persistent organic pollutants and real wastewaters treatment in BEF system are presented. Some challenges and possible future prospects such as suitable methods for improving current generation, selection of electrode materials, and methods for reducing iron residues and application over a wide pH range are also given. Thus, the present review mainly revealed that BEF system is an environmental friendly technology for integrated wastewater treatment and clean energy production.

6.
J Biomol Struct Dyn ; 40(2): 807-819, 2022 02.
Article in English | MEDLINE | ID: mdl-32912085

ABSTRACT

The N-terminal sequence of the Smac (second-mitochondria derived activator) protein is known to be involved in binding to the BIR3 (Baculovirus IAP repeat) domain of the IAPs (inhibitors of apoptosis proteins), and antagonized their function. Short peptides derived from N-terminal residues of Smac have shown to sensitize cancer cells to chemotherapeutic agents. In this regard, small library including 6-mer peptides were designed using docking to the BIR3 domain of cIAP1 in silico. Molecular dynamics simulation studies were also done on top-scored hits (SmacAQ, SmacIQ) using Desmond 2017-2 for 150 ns simulation time. These two peptides were conveniently synthesized using solid phase peptide synthesis on Fmoc-Gln (Trt)-Wang resin. Furthermore, we encapsulated DOX (doxorubicin) and synthesized peptides in PLGA: PLGA-PEG (9:1) NPs (nanoparticles) followed by MD (molecular dynamic) studies to understand the NP structure and the interactions between either DOX or peptide with polymeric nanoparticles during 100 ns simulation. Finally, the cytotoxic activity of these peptides in combination with DOX against two cancer cell lines including MCF7 and C26 were investigated. As a result, we found that DOX or peptide-loaded NPs had stable structure during the simulation. MD simulation also showed that alanine at N-terminal of Smac could be replaced with isoleucine without alternation of biological activity which was in agreement with in vitro experiments. Moreover, NPs-SmacIQ and NPs-SmacAQ significantly enhanced the cytotoxicity effect of NPs-DOX in vitro (p < 0.001).Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Nanoparticles , Neoplasms , Oligopeptides , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Synergism , Humans , MCF-7 Cells , Molecular Docking Simulation , Nanoparticles/chemistry , Neoplasms/drug therapy , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Oligopeptides/pharmacology
7.
Pharmaceutics ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36678698

ABSTRACT

An attempt was made to conquer the limitation of orally administered nanoparticles for the delivery of budesonide to the colon. The ionic gelation technique was used to load budesonide on chitosan nanoparticles. The nanoparticles were investigated in terms of size, zeta potential, encapsulation efficiency, shape and drug release. Then, nanoparticles were pelletized using the extrusion-spheronization method and were investigated for their size, mechanical properties, and drug release. Pellets were subsequently coated with a polymeric solution composed of two enteric (eudragit L and S) and time-dependent polymers (eudragit RS) for colon-specific delivery. All formulations were examined for their anti-inflammatory effect in rats with induced colitis and the relapse of the colitis after discontinuation of treatment was also followed. The size of nanoparticles ranged between 288 ± 7.5 and 566 ± 7.7 nm and zeta potential verified their positive charged surface. The drug release from nanoparticles showed an initial burst release followed by a continuous release. Pelletized nanoparticles showed proper mechanical properties and faster drug release in acidic pH compared with alkaline pH. It was interesting to note that pelletized budesonide nanoparticles released the drug throughout the GIT in a sustained fashion, and had long-lasting anti-inflammatory effects while rapid relapse was observed for those treated with conventional budesonide pellets. It seems that there is a synergistic effect of nanoformulation of budesonide and the encapsulation of pelletized nanoparticles in a proper coating system for colon delivery that could result in a significant and long-lasting anti-inflammatory effect.

8.
Cell Tissue Bank ; 23(2): 237-246, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34013429

ABSTRACT

Mesenchymal Stem Cells (MSCs) are important in regenerative medicine and tissue engineering and will be a very sensible choice for repair and regeneration of tendon. New biological practices, such as cellular therapy using stem cells, are promising for facilitating or expediting tendon therapy. Before using these cells clinically, it is best to check and confirm the optimal conditions for differentiation of these cells in the laboratory. Hence, in the present study, the impacts of PDGF-BB and GDF-6 supplementation on adipose-derived MSCs (ASCs) culture were studied. The frozen ASC were recovered and expanded in basic culture medium (DMEM with 10%FBS). The cells after passage five (P5) were treated with basic medium containing L-Prolin, Ascorbic Acid and only PDGF-BB or GDF-6 (20 ng/ml) or both of them (mix) as 3 groups for 14 days to investigate efficiency of ASCs differentiation towards tenocytes. The cells culturing in basic medium were used as control group. To validate tenogenic differentiation, H&E and Sirius Red staining were used to assess cell morphology and collagen production, respectively. In addition, mRNA levels of collagen I and III, Scleraxis and Tenomodulin as tenogenic markers were analyzed using qPCR. In all test groups, cells appeared slenderer, elongated cytoplasmic attributes compared to the control cells. The intensity of Sirius Red staining was significantly higher in GDF-6, PDGF-BB alone, than in group without supplements. The optical density was higher in the GDF-6 than PDGF-BB and mix-group. QPCR results showed that Col I and III gene expression was increased in all groups compared to the control. SCX expression was significantly increased only in the PDGF-BB group. TNMD mRNA expression was not significant among groups. In this study, we have corroborated that human ASCs are reactionary to tenogenic induction by GDF-6 and PDGF-BB alone or in combination. These outcomes will help greater insight into GDF-6 and PDGF-BB driven tenogenesis of ASCs and new directions of discovery in the design of ASC-based treatments for tendon healing.


Subject(s)
Becaplermin , Growth Differentiation Factor 6 , Mesenchymal Stem Cells , Tenocytes , Becaplermin/pharmacology , Cell Differentiation , Cells, Cultured , Collagen/metabolism , Culture Media , Growth Differentiation Factor 6/pharmacology , Humans , RNA, Messenger/metabolism , Tenocytes/metabolism
9.
Colloids Surf B Biointerfaces ; 208: 112047, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34418722

ABSTRACT

In this study, we developed a peptide-based non-viral carrier decorated with aptamer to overcome the specific gene delivery barriers. The carrier (KLN/Apt) was designed to contain multiple functional segments, including 1) two tandem repeating units of low molecular weight protamine (LMWP) to condense DNA into stable nanosize particles and protect it from enzymatic digestion, 2) AS1411 aptamer as targeting moiety to target nucleolin and promote carrier internalization, 3) a synthetic pH-sensitive fusogenic peptide (KALA) for disrupting endosomal membranes and enhancing cytosol escape of the nanoparticles, and 4) a nuclear localization signal (NLS) for active cytoplasmic trafficking and nuclear delivery of DNA. The obtained results revealed the developed carrier capacity in terms of specific cell targeting, overcoming cellular gene delivery barriers, and mediating efficient gene transfection. The KLN/pDNA/aptamer nanoparticles offer remarkable potential for the conceptual design and formation of promising multi-functionalized carriers towards the most demanding therapeutic applications.


Subject(s)
Nanoparticles , Neoplasms , Gene Transfer Techniques , Genes, Neoplasm , Genetic Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Peptides/genetics
10.
Biomed Tech (Berl) ; 66(5): 459-472, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-33930264

ABSTRACT

In this study, we propose a method for detecting obstructive sleep apnea (OSA) based on the features extracted from empirical mode decomposition (EMD) and the neural networks trained by particle swarm optimization (PSO) in the classification phase. After extracting the features from the intrinsic mode functions (IMF) of each heart rate variability (HRV) signal of each segment, these features were applied to the input of popular classifiers such as multi-layer perceptron neural networks (MLPNN), Naïve Bayes, linear discriminant analysis (LDA), k-nearest neighborhood (KNN), and support vector machines (SVM) were applied. The results show that the MLPNN learned with back propagation (BP) algorithm has a diagnostic accuracy of less than 90%, and this may be due to being derivative based property of the BP algorithm, which causes trapping in the local minima. For Improving MLPNN's performance, we used the PSO algorithm instead of the BP method in training part. Therefore, the MLPNN's accuracy improved from 89.36 to 97.66% after the application of the PSO algorithm. The proposed method has also reached to 97.78 and 97.96% in sensitivity and specificity, respectively. So, it can be concluded that the proposed method achieves better or comparable results when compared with the previous works in this field.


Subject(s)
Electrocardiography , Sleep Apnea Syndromes , Algorithms , Bayes Theorem , Humans , Neural Networks, Computer , Support Vector Machine
11.
RSC Adv ; 11(44): 27160-27173, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-35480664

ABSTRACT

In this new insight, the potential application of the eco-friendly Bio-Electro-Fenton (BEF) system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source. To shed light on this issue, catalytic degradation of tetracycline was directly accrued via in situ generated hydroxyl free radicals from Fenton's reaction in the cathode chamber. Simultaneously, the in situ electricity generation as renewable bioenergy was carried out through microbial activities. The effects of operating parameters, such as electrical circuit conditions (in the absence and presence of external resistor load), substrate concentration (1000, 2000, 5000, and 10 000 mg L-1), catholyte pH (3, 5, and 7), and FeSO4 concentration (2, 5, and 10 mg L-1) were investigated in detail. The obtained results indicated that the tetracycline degradation was up to 99.04 ± 0.91% after 24 h under the optimal conditions (short-circuit, pH 3, FeSO4 concentration of 5 mg L-1, and substrate concentration of 2000 mg L-1). Also, the maximum removal efficiency of anodic COD (85.71 ± 1.81%) was achieved by increasing the substrate concentration up to 2000 mg L-1. However, the removal efficiencies decreased to 78.29 ± 2.68% with increasing substrate concentration up to 10 000 mg L-1. Meanwhile, the obtained maximum voltage, current density, and power density were 322 mV, 1195 mA m-2, and 141.60 mW m-2, respectively, at the substrate concentration of 10 000 mg L-1. Present results suggested that the BEF system could be employed as an energy-saving and promising technology for antibiotic-containing wastewater treatment and simultaneous sustainable bioelectricity generation.

12.
Mater Sci Eng C Mater Biol Appl ; 119: 111618, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321660

ABSTRACT

Regarding side effects of commonly used chemotherapeutic drugs on normal tissues, researchers introduced smart delivery and on-demand release systems. Herein, we applied a bivalent aptamer composed of ATP and AS1411 aptamers for separate targeting and gating of mesoporous silica nanoparticles in a ladder like structure with one bifunctional molecule. First part of the apatmer, AS1411, direct the delivery system to the desired site while the second part, ATP aptamer, opens the pores and release the drug just after penetrance to the cytoplasm ensuring delivery of DOX into the tumor cells. This approach faced the previous challenge of coincident targeting and gating with one aptamer. Our results demonstrated that the proposed nano-system remarkably accumulated in cancer tissue and released the drug in a sustained pattern in cancer cells. It was notably effective for inducing apoptosis in cancer cells and tumor growth inhibition without any significant side effect on normal cells and organs. Moreover, Si-cs-DOX-AAapt improved the mice survival time compared with free doxorubicin and there was no significant change in weight of mice administered with the targeted formulation. This report may open new insight for providing smart delivery systems for successful cancer treatment by introducing separate gating and targeting property by a bivalent aptamer to increase the control over drug release.


Subject(s)
Aptamers, Nucleotide , Nanoparticles , Animals , Cell Line, Tumor , Cell Survival , Doxorubicin/pharmacology , Drug Delivery Systems , Mice , Porosity , Silicon Dioxide
13.
Mol Biol Rep ; 47(9): 6855-6862, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32875433

ABSTRACT

Managing tendon healing process is complicated mainly due to the limited regeneration capacity of tendon tissue. Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and have been considered for tendon repair and regeneration. This study aimed to evaluate the capacity of equine adipose tissue-derived cells (eASCs) to differentiate into tenocytes in response to platelet-derived growth factor-BB (PDGF-BB) and growth differentiation factor-6 (GDF-6) in vitro. Frozen characterized eASCS of 3 mares were thawed and the cells were expanded in basic culture medium (DMEM supplemented with 10% FBS). The cells at passage 5 were treated for 14 days in different conditions including: (1) control group in basic culture medium (CM), (2) induction medium as IM (CM containing L-prolin, and ascorbic acid (AA)) supplemented with PDGF-BB (20 ng/ml), (3) IM supplemented with GDF-6 (20 ng/ml), and (4) IM supplemented with PDGF-BB and GDF-6. At the end of culture period (14th day), tenogenic differentiation was evaluated. Sirius Red staining was used to assess collagen production, and H&E was used for assessing cell morphology. mRNA levels of collagen type 1 (colI), scleraxis (SCX), and Mohawk (MKX), as tenogenic markers, were analyzed using real-time reverse-transcription polymerase chain reaction (qPCR). H&E staining showed a stretching and spindle shape (tenocyte-like) cells in all treated groups compared to unchanged from of cells in control groups. Also, Sirius red staining data showed a significant increase in collagen production in all treated groups compared with the control group. MKX expression was significantly increased in PDGF-BB and mixed groups and COLI expression was significantly increased only in PDGF-BB group. In conclusion, our results showed that PDGF-BB and GDF-6 combination could induce tenogenic differentiation in eASCs. These in vitro findings could be useful for cell therapy in equine regenerative medicine.


Subject(s)
Becaplermin/pharmacology , Cell Differentiation/genetics , Growth Differentiation Factor 6/pharmacology , Mesenchymal Stem Cells/metabolism , Tendons/metabolism , Tissue Engineering/methods , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Horses , Real-Time Polymerase Chain Reaction , Tendons/cytology
14.
Int Immunopharmacol ; 88: 106928, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32862110

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by the novel coronavirus called SARS-CoV-2. There is a gap in our understanding regarding the immunopathogenesis of COVID-19. However, many clinical trials are underway across the world for screening effective drugs against COVID-19. Nevertheless, currently, no proven effective therapies for this virus exists. The vaccines are deemed as a significant part of disease prevention for emerging viral diseases, since, in several cases, other therapeutic choices are limited or non-existent, or that diseases result in such an accelerated clinical worsening that the efficacy of treatments is restricted. Therefore, effective vaccines against COVID-19 are urgently required to overcome the tremendous burden of mortality and morbidity correlated with SARS-CoV-2. In this review, we will describe the latest evidence regarding outstanding vaccine approaches and the challenges for vaccine production.


Subject(s)
Coronavirus Infections/prevention & control , Drug Development/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Antibodies, Viral/blood , Betacoronavirus , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/immunology , Humans , Immunogenicity, Vaccine , Lung/immunology , Lung/virology , Pneumonia, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
15.
Int J Pharm ; 587: 119650, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32679263

ABSTRACT

Targeting inhibitors of apoptosis proteins (IAPs) family comprising high level expression in many cancer cells, could sensitize tumor cells to conventional chemotherapies. In the present study, we designed both doxorubicin and SmacN6 (an antagonist of the IAPs) encapsulated polymeric nanoparticles (NPs) and investigated their synergistic effect of combination therapy in vitro and in vivo. According to the results, NPs-SmacN6 significantly enhanced the cytotoxicity effect of NPs-DOX and reduced its IC50 in MCF-7, 4T1 and C26 cancer cells. Western blot analysis confirmed mechanism of cell apoptosis via caspase activation through intrinsic and also extrinsic pathways. Moreover, 5TR1 aptamer-modified NPs could effectively deliver DOXor SmacN6 to C26 cancer cells (MUC1 positive) in comparison with the non-targeted one (p < 0.001). However, they could not be efficiently internalized into CHO cells (MUC1 negative), showing less cytotoxicity in this cell line. In vivo experiments in BALB/c mice bearing C26 tumor indicated that Apt-NPs-DOX in combination with Apt-NPs-SmacN6 had significant tumor growth inhibition in comparison with mice receiving either free DOX or Apt-NPs-DOX with p < 0.0001 and p < 0.05, respectively. Our results revealed that combination therapy of DOX and SmacN6 via Apt-modified nanoparticles can lead to improvement of therapeutic index of DOX in MUC1 positive cancer cells.


Subject(s)
Nanoparticles , Neoplasms , Animals , Cell Line, Tumor , Cricetinae , Cricetulus , Doxorubicin , Drug Delivery Systems , Mice , Mice, Inbred BALB C , Oligopeptides
16.
Biotechnol Lett ; 42(1): 103-114, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31686286

ABSTRACT

OBJECTIVE: Thrombin, platelets, and plasmin are three key factors involved in hemostasis and thrombolysis. Thrombolytic therapy with clinically approved drugs is often followed by recurrent thrombosis caused by thrombin-induced platelet aggregation from the clot debris. In order to minimize these problems, new constructs were designed for the expression of recombinant staphylokinase (rSAK) and also a fusion protein composed of staphylokinase, 20 amino acids containing 2 RGD followed by tsetse thrombin Inhibitor (SAK-2RGD-TTI) in Pichia pastoris. RESULT: Modeling the tertiary structure of SAK-2RGD-TTI showed that the linker containing RGD and TTI did not interfere with proper folding of SAK. In laboratory testing, the purified SAK-2RGD-TTI (420 µg/mL) dissolved an average of 45% of the blood clot. The activity of the SAK-2RGD-TTI was also confirmed in various tests including human plasminogen activation assay, fibrin clot lysis assay, well diffusion method, activated partial thromboplastin time and platelet rich clot lysis assay. CONCLUSION: Our findings suggest that SAK-2RGD-TTI has improved therapeutic properties preventing reocclussion. It further confirms that it is practicable to assemble and produce a hybrid multifunctional protein that targets hemostatic process at various stages.


Subject(s)
Metalloendopeptidases/metabolism , Pichia/metabolism , Recombinant Fusion Proteins/metabolism , Thrombolytic Therapy/methods , Antithrombin Proteins/chemistry , Antithrombin Proteins/genetics , Antithrombin Proteins/metabolism , Humans , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Pichia/genetics , Protein Conformation , Recombinant Fusion Proteins/genetics
17.
J Educ Health Promot ; 8: 173, 2019.
Article in English | MEDLINE | ID: mdl-31867358

ABSTRACT

BACKGROUND: The patient handover process is in fact a valuable and essential part of the care processes in the hospitals. This can be a factor in increasing the quality and effectiveness of medical care. Incorrect and incomplete handover can increase the percentage of errors and cause serious problems for patients. The aim of this study was to identify the handover challenges concerning safety and quality of health services. MATERIALS AND METHODS: A systematic review was conducted according to the Preferred Reporting Item for Systematic Reviews and Meta-analyses guideline. The key words "challenges of patient handover" or "challenges of patient handoff" were used in combination with the Boolean operators OR and AND. The ProQuest, Ovid, Doaj, Magiran, SID, Scopus, Science Direct, PubMed, and ISI were searched. RESULTS: A total of 263 articles were extracted, and 20 articles were selected for final review. The results of selected articles indicated that there are various challenges such as communication, noncoordination, nonuse of checklist, poor management, time management, and other things. These studies reported that communication was the main challenge of handover process. CONCLUSIONS: Hospitals try to provide a lot of services to the patients and other customers in a safe and healthy environment. Lack of communication among the incoming and outgoing nurses in handover process is one of the main causes of reduced safety and quality of services and patient dissatisfaction.

18.
Biotechnol Prog ; 35(4): e2819, 2019 07.
Article in English | MEDLINE | ID: mdl-30972956

ABSTRACT

Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3-4 days. The highest expression was obtained at the range of 2-3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25-37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7-9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.


Subject(s)
Antithrombin Proteins/pharmacology , Fibrinolytic Agents/pharmacology , Insect Proteins/pharmacology , Metalloendopeptidases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Antithrombin Proteins/chemistry , Fibrinolytic Agents/chemistry , Humans , Hydrogen-Ion Concentration , Insect Proteins/chemistry , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Temperature
19.
AAPS PharmSciTech ; 20(3): 111, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30756255

ABSTRACT

Development of efficient non-viral carriers is one of the major challenges of gene delivery. In the current study, we designed, synthesized, and evaluated the in vitro gene delivery efficiency of novel amphiphilic constructs composed of cholesterol and low molecular weight protamine (LMWP: VSRRRRRRGGRRRR) peptide. Vectors having both hydrophobic and hydrophilic moieties were evaluated in terms of particle size and charge, DNA condensation ability, cytotoxicity, and gene transfection efficiency. The prepared vectors spontaneity self-assembled into the liposome-like particles with a high local positive density. The nano-vehicle A (H5-LMWP-Cholestrol) and nano-vehicle B (LMWP-Cholesterol) could form micelles at concentrations above 50 µg/mL and 65 µg/mL, respectively. The gel retardation assay showed that nano-vehicles A and B could condense pDNA more efficiently than the corresponding unconjugated peptides. The mean of size and zeta potential of complexed nano-vehicle A at N/P ratios of 5, 15, and 30 were 151 nm and 23 mv, and those of nano-vehicle B were 224 nm and 19 mv, respectively. In terms of transfection efficiency, the designed nano-vehicles showed almost two-fold higher gene expression level compared to PEI 25 kDa at optimal N/P ratios, and also exhibited negligible cytotoxicity on a model cancer cell, Neuro 2a. The findings of the present study revealed that these cationic micelles can be promising candidates as non-viral gene delivery vehicles.


Subject(s)
Gene Transfer Techniques , Protamines/chemistry , Protamines/pharmacology , Amino Acid Sequence , Cell Survival , Cholesterol/chemistry , DNA/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes , Micelles , Molecular Weight , Particle Size , Peptides/chemistry , Plasmids , Polyethyleneimine/chemistry , Protamines/chemical synthesis
20.
Eur J Med Chem ; 164: 292-303, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30599418

ABSTRACT

A new series of benzo- and tetrahydro benzo-[h]quinoline bearing a flexible (dimethylamino)ethylcarboxamide side chain was designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four human cancer cell lines including MCF-7, A2780, C26 and A549. In general, saturated quinolines (tetrahydrobenzo[h]quinolines) exhibited more cytotoxicity compared to their corresponding unsaturated quinolines (benzo[h]quinolines). Compound 6e showed significant cytotoxicity against all four human cancer cell lines with IC50 values ranging from 1.86 to 3.91 µM. The interaction of the selected compounds showed significant cytotoxicity (6b, 6e, 6i and 6j) with calf thymus DNA (CT-DNA) was studied by UV and florescent spectroscopy. In general, benzo[h]quinolines showed higher interacting effect with DNA than their corresponding saturated tetrahydrobenzo[h]quinolines. Compound 6i exhibited the most DNA intercalating effects among the series. The apoptotic induction potential of the most cytotoxic compounds (6e, 6b and 6i) in A549 cells was studied using Annexin V-FITC/Propidium iodide staining assay. Compound 6e which showed the most cytotoxic effect against A549 cancer cells also exhibited stronger apoptotic induction activity in comparison with 6b and 6i.The docking was performed in order to study the DNA interaction properties of these compounds. According to the computational data, these compounds can interact with DNA as DNA-intercalating agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , DNA/metabolism , Quinolines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Intercalating Agents/metabolism , Molecular Docking Simulation , Quinolines/chemistry , Quinolines/therapeutic use , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL