Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 228: 113321, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34175788

ABSTRACT

4D-scanning transmission electron microscopy (4D-STEM) can be used to measure electric fields such as atomic fields or polarization-induced electric fields in crystal heterostructures. The paper focuses on effects occurring in 4D-STEM at interfaces, where two model systems are used: an AlN/GaN nanowire superlattice as well as a GaN/vacuum interface. Two different methods are applied: First, we employ the centre-of mass (COM) technique which uses the average momentum transfer evaluated from the intensity distribution in the diffraction pattern. Second, we measure the shift of the undiffracted disc (disc-detection method) in nano-beam electron diffraction (NBED). Both methods are applied to experimental and simulated 4D-STEM data sets. We find for both techniques distinct variations in the momentum transfer at interfaces between materials: In both model systems, peaks occur at the interfaces and we investigate possible sources and routes of interpretation. In case of the AlN/GaN superlattice, the COM and disc-detection methods are used to measure internal polarization-induced electric fields and we observed a reduction of the measured fields with increasing specimen thickness.

2.
Ultramicroscopy ; 223: 113221, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588232

ABSTRACT

Modern quantitative TEM methods such as the ζ-factor technique require precise knowledge of the electron beam current. To this end, a macroscopic Faraday cup was designed and constructed. It can replace the viewing screen in the projection chamber of a TEM and guarantees highly accurate measurement of the electron beam with precision only limited by the used amperemeter. The easy to install, affordable device is shown to be highly apt for precision measurement of currents >5pA. The Faraday cup results are used for an assessment and a comparison of various other beam current measurement methods. It is found that the built-in screen amperemeter of the used TEM is quite inaccurate and that measurements using the screen in general tend to underestimate the current. If present, the drift tube of a spectrometer can also be used as a Faraday cup, but certain described peculiarities have to be taken into account. Direct ultrafast electron detection cameras allow precise measurement at very small currents. For the electron counting technique, which exploits single electron detection capabilities of STEM detectors, a systematic current underestimation was observed and investigated. This results in a reformulated routine for the method and with these improvements it is demonstrated to be capable of accurate high-precision measurements for currents <5pA.

3.
Ultramicroscopy ; 196: 74-82, 2019 01.
Article in English | MEDLINE | ID: mdl-30291992

ABSTRACT

Images acquired in transmission electron microscopes can be distorted for various reasons such as e.g. aberrations of the lenses of the imaging system or inaccuracies of the image recording system. This results in inaccuracies of measures obtained from the distorted images. Here we report on measurement and correction of elliptical distortions of diffraction patterns. The effect of this correction on the measurement of crystal lattice strain is investigated. We show that the effect of the distortions is smaller than the precision of the measurement in cases where the strain is obtained from shifts of diffracted discs with respect to their positions in images acquired in an unstrained reference area of the sample. This can be explained by the fact that diffraction patterns acquired in the strain free reference area of the sample are distorted in the same manner as the diffraction patterns acquired in the strained region of interest. In contrast, for samples without a strain free reference region such as nanoparticles or nanoporous structures, where we evaluate ratios of lattice plane distances along different directions, the distortions are usually not negligible. Furthermore, two techniques for the detection of diffraction disc positions are compared showing that for samples in which the crystal orientation changes over the investigated area it is more precise to detect the positions of many diffraction discs simultaneously instead of detecting each disc position independently.

4.
Ultramicroscopy ; 180: 173-179, 2017 09.
Article in English | MEDLINE | ID: mdl-28434783

ABSTRACT

Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Therefore coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light and heavy elements at atomic resolution. In this work, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.

5.
Opt Express ; 21(10): 12385-94, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736456

ABSTRACT

Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Lasers , Photometry/methods , Refractometry/methods , Surface Plasmon Resonance/methods , X-Rays , Electrons , Equipment Design , Equipment Failure Analysis , Microspheres
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 838-42, 2013 May.
Article in English | MEDLINE | ID: mdl-23633593

ABSTRACT

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ångstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.


Subject(s)
Crystallography, X-Ray/methods , Lasers , Protein Conformation , Sulfur/chemistry , Crystallography, X-Ray/instrumentation , Cysteine/chemistry , Models, Molecular , Muramidase/chemistry
7.
Opt Express ; 21(23): 28729-42, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514385

ABSTRACT

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

8.
Opt Express ; 20(4): 4149-58, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418172

ABSTRACT

We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.

9.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21293373

ABSTRACT

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Subject(s)
Crystallography, X-Ray/methods , Nanoparticles/chemistry , Nanotechnology/methods , Photosystem I Protein Complex/chemistry , Crystallography, X-Ray/instrumentation , Lasers , Models, Molecular , Nanotechnology/instrumentation , Protein Conformation , Time Factors , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...