Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Malar J ; 23(1): 173, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835017

ABSTRACT

BACKGROUND: National Malaria Programmes (NMPs) monitor the durability of insecticide-treated nets (ITNs) to inform procurement and replacement decisions. This is crucial for new dual active ingredients (AI) ITNs, for which less data is available. Pyrethroid-only ITN (Interceptor®) and dual AI (Interceptor® G2, and PermaNet® 3.0) ITNs were assessed across three health districts over 36 months in southern Burkina Faso to estimate median ITN survival, insecticidal efficacy, and to identify factors contributing to field ITN longevity. METHODS: Durability was monitored through a prospective study of a cohort of nets distributed during the 2019 mass campaign. Three health districts were selected for their similar pyrethroid-resistance, environmental, epidemiological, and population profiles. Households were recruited after the mass campaign, with annual household questionnaire follow-ups over three years. Each round, ITNs were withdrawn for bioassays and chemical residue testing. Key measures were the percentage of cohort ITNs in serviceable condition, insecticidal effectiveness, and chemical residue content against target dose. Cox proportional hazard models were used to identify determinants influencing ITN survival. RESULTS: At endline, the median useful life was 3.2 (95% CI 2.5-4.0) years for PermaNet® 3.0 ITNs in Orodara, 2.6 (95% CI 1.9-3.2) years for Interceptor® G2 ITNs in Banfora and 2.4 (95% CI 1.9-2.9) years for Interceptor® ITNs in Gaoua. Factors associated with ITN survival included cohort ITNs from Orodara (adjusted hazard ratio (aHR) = 0.58, p = 0.026), households seeing less rodents (aHR = 0.66, p = 0.005), female-headed households (aHR = 0.66, p = 0.044), exposure to social behavior change (SBC) messages (aHR = 0.52, ≤ 0.001) and folding nets when not in use (aHR = 0.47, p < 0.001). At endline, PermaNet® 3.0 ITN recorded 24-h mortality of 26% against resistant mosquitos on roof panels, with an 84% reduction in PBO content. Interceptor® G2 ITN 72-h mortality was 51%, with a 67% reduction in chlorfenapyr content. Interceptor® ITN 24-h mortality was 71%, with an 84% reduction in alpha-cypermethrin content. CONCLUSION: Only PermaNet® 3.0 ITNs surpassed the standard three-year survival threshold. Identified protective factors should inform SBC messaging. Significant decreases in chemical content and resulting impact on bioefficacy warrant more research in other countries to better understand dual AI ITN insecticidal performance.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Mosquito Control , Burkina Faso , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Prospective Studies , Pyrethrins/pharmacology , Malaria/prevention & control , Animals , Humans , Anopheles/drug effects , Anopheles/physiology , Female
2.
Parasit Vectors ; 16(1): 438, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012775

ABSTRACT

BACKGROUND: Mosquitoes (Diptera: Culicidae) can have a significant negative impact on human health. The urbanization of natural environments and their conversion for agricultural use, as well as human population growth, may affect mosquito populations and increase the risk of emerging or re-emerging mosquito-borne diseases. We report on the variety and number of adult mosquitoes found in four environments with varying degrees of human impact (rural, urban, rice fields, and forest) located in a savannah zone of West Africa. METHODS: Mosquitoes were collected from two regions (Hauts-Bassins and Sud-Ouest) of Burkina Faso during five periods between August 2019 and June 2021. Sampling sites were grouped according to environment. Mosquitoes were collected using BG-Sentinel traps and double net traps, and Prokopack Aspirators. Statistical analyses were performed using R software version 4.1.2. Logistic regression, using generalised mixed linear models, was used to test the effect of environment on mosquito abundance and diversity. Alpha diversity analysis was also performed, using the vegan package. RESULTS: A total of 10,625 adult mosquitoes were collected, belonging to 33 species and five genera: Culex, Aedes, Anopheles, Mansonia, and Ficalbia. The most dominant species were Culex quinquefasciatus, Anopheles gambiae sensu lato and Aedes aegypti. Alpha diversity was similar in the two regions. Habitat had a significant effect on mosquito species richness, the Shannon index and the Simpson index. The rural environment had the highest species richness (n = 28) followed by the forest environment (n = 24). The highest number of mosquitoes (4977/10,625) was collected in the urban environment. CONCLUSIONS: The species composition of the mosquito populations depended on the type of environment, with fewer species in environments with a high human impact such as urban areas and rice fields. Due to the diversity and abundance of the mosquito vectors, the human populations of all of the environments examined are considered to be at potential risk of mosquito-borne diseases.


Subject(s)
Aedes , Anopheles , Culex , Culicidae , Vector Borne Diseases , Humans , Animals , Burkina Faso , Biodiversity , Mosquito Vectors
3.
GigaByte ; 2023: gigabyte83, 2023.
Article in English | MEDLINE | ID: mdl-37408730

ABSTRACT

Characterizing the entomological profile of malaria transmission at fine spatiotemporal scales is essential for developing and implementing effective vector control strategies. Here, we present a fine-grained dataset of Anopheles mosquitoes (Diptera: Culicidae) collected in 55 villages of the rural districts of Korhogo (Northern Côte d'Ivoire) and Diébougou (South-West Burkina Faso) between 2016 and 2018. In the framework of a randomized controlled trial, Anopheles mosquitoes were periodically collected by Human Landing Catches experts inside and outside households, and analyzed individually to identify the genus and, for a subsample, species, insecticide resistance genetic mutations, Plasmodium falciparum infection, and parity status. More than 3,000 collection sessions were carried out, achieving about 45,000 h of sampling efforts. Over 60,000 Anopheles were collected (mainly A. gambiae s.s., A. coluzzii, and A. funestus). The dataset is published as a Darwin Core archive in the Global Biodiversity Information Facility, comprising four files: events, occurrences, mosquito characterizations, and environmental data.

4.
Sci Rep ; 12(1): 19077, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352066

ABSTRACT

The persistence of malaria and the increasing of resistance of Anopheles gambiae species to chemicals remain major public health concerns in sub-Saharan Africa. Faced to these concerns, the search for alternative vector control strategies as use of essential oils (EOs) need to be implemented. Here, the five EOs from Cymbopogon citratus, Cymbopogon nardus, Eucalyptus camaldulensis, Lippia multiflora, Ocimum americanum obtained by hydro distillation were tested according to World Health Organization procedures on An. gambiae "Kisumu" and field strains collected in "Vallée du Kou". Also, the binary combinations of C. nardus (Cn) and O. americanum (Oa) were examined. As results, among the EOs tested, L. multiflora was the most efficient on both An. gambiae strains regarding KDT50 (50% of mosquitoes knock down time) and KDT95 and rate of morality values. Our current study showed that C8 (Cn 80%: Oa 20%) and C9 (Cn 90%: Oa 10%), were the most toxic to An. gambiae strain "Vallée de Kou" (VK) with the mortality rates reaching 80.7 and 100% at 1% concentration, respectively. These two binary combinations shown a synergistic effect on the susceptible population. However, only C9 gave a synergistic effect on VK population. The bioactivity of the two EOs, C. nardus and O. americanum, was improved by the combinations at certain proportions. The resistance ratios of all EOs and of the combinations were low (< 5). The combinations of C. nardus and O. americanum EOs at 90: 10 ratio and to a lesser extent L. multiflora EO, could be used as alternative bio-insecticides against malaria vectors resistant to pyrethroids in vector control programmes.


Subject(s)
Anopheles , Cymbopogon , Insecticides , Malaria , Oils, Volatile , Pyrethrins , Animals , Oils, Volatile/pharmacology , Mosquito Vectors , Pyrethrins/pharmacology , Insecticides/pharmacology , Insecticide Resistance
5.
Malar J ; 21(1): 353, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36437444

ABSTRACT

BACKGROUND: This study was designed to provide insecticide resistance data for decision-making in terms of resistance management plans in Togo. METHODS: The susceptibility status of Anopheles gambiae sensu lato (s.l.) to insecticides used in public health was assessed using the WHO tube test protocol. Pyrethroid resistance intensity bioassays were performed following the CDC bottle test protocol. The activity of detoxification enzymes was tested using the synergists piperonyl butoxide, S.S.S-tributlyphosphorotrithioate and ethacrinic acid. Species-specific identification of An. gambiae s.l. and kdr mutation genotyping were performed using PCR techniques. RESULTS: Local populations of An. gambiae s.l. showed full susceptibility to pirimiphos methyl at Lomé, Kovié, Anié, and Kpèlè Toutou. At Baguida, mortality was 90%, indicating possible resistance to pirimiphos methyl. Resistance was recorded to DDT, bendiocarb, and propoxur at all sites. A high intensity of pyrethroid resistance was recorded and the detoxification enzymes contributing to resistance were oxidases, esterases, and glutathione-s-transferases based on the synergist tests. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii were the main species identified. High kdr L1014F and low kdr L1014S allele frequencies were detected at all localities. CONCLUSION: This study suggests the need to reinforce current insecticide-based malaria control interventions (IRS and LLINs) with complementary tools.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Anopheles/genetics , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Togo , Insecticides/pharmacology
6.
Insects ; 13(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36421951

ABSTRACT

Targeting genes involved in sexual determinism, for vector or pest control purposes, requires a better understanding of their polymorphism in natural populations in order to ensure a rapid spread of the construct. By using genomic data from An. gambiae s.l., we analyzed the genetic variation and the conservation score of the fru gene in 18 natural populations across Africa. A total of 34,339 SNPs were identified, including 3.11% non-synonymous segregating sites. Overall, the nucleotide diversity was low, and the Tajima's D neutrality test was negative, indicating an excess of low frequency SNPs in the fru gene. The allelic frequencies of the non-synonymous SNPs were low (freq < 0.26), except for two SNPs identified at high frequencies (freq > 0.8) in the zinc-finger A and B protein domains. The conservation score was variable throughout the fru gene, with maximum values in the exonic regions compared to the intronic regions. These results showed a low genetic variation overall in the exonic regions, especially the male sex-specific exon and the BTB-exon 1 of the fru gene. These findings will facilitate the development of an effective gene drive construct targeting the fru gene that can rapidly spread without encountering resistance in wild populations.

7.
Parasite Epidemiol Control ; 18: e00261, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35859938

ABSTRACT

Despite the implementation of different strategies to fight against malaria in Burkina Faso since 2005, it remains today the leading cause of hospitalization and death. Adapting interventions to the spatial and temporal distribution of malaria could help to reduce this burden. This study aims to determine the structure and stability of malaria hotspots in Burkina Faso, with the objective of adapting interventions at small geographical scales. Data on malaria cases from 2013 to 2020 were acquired at municipalities level. Municipality-wise malaria endemicity levels were mapped through geographical information system (GIS) tools. Spatial statistical analysis using Kulldoff sweeps were carried out to identify malaria hotspots. Then we mapped the monthly malaria risk. Malaria is endemic in all the municipalities of Burkina Faso. However, two stable main spatial clusters (South-Western and Eastern part of the country) are emerging with seasonal reinforcement. Interventions targeting the identified clusters could significantly reduce the incidence of malaria in Burkina Faso. This also prompts for further studies to identify the local determinants of this high transmission for the future success of malaria control.

8.
Parasit Vectors ; 14(1): 345, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34187546

ABSTRACT

BACKGROUND: Improving the knowledge and understanding of the environmental determinants of malaria vector abundance at fine spatiotemporal scales is essential to design locally tailored vector control intervention. This work is aimed at exploring the environmental tenets of human-biting activity in the main malaria vectors (Anopheles gambiae s.s., Anopheles coluzzii and Anopheles funestus) in the health district of Diébougou, rural Burkina Faso. METHODS: Anopheles human-biting activity was monitored in 27 villages during 15 months (in 2017-2018), and environmental variables (meteorological and landscape) were extracted from high-resolution satellite imagery. A two-step data-driven modeling study was then carried out. Correlation coefficients between the biting rates of each vector species and the environmental variables taken at various temporal lags and spatial distances from the biting events were first calculated. Then, multivariate machine-learning models were generated and interpreted to (i) pinpoint primary and secondary environmental drivers of variation in the biting rates of each species and (ii) identify complex associations between the environmental conditions and the biting rates. RESULTS: Meteorological and landscape variables were often significantly correlated with the vectors' biting rates. Many nonlinear associations and thresholds were unveiled by the multivariate models, for both meteorological and landscape variables. From these results, several aspects of the bio-ecology of the main malaria vectors were identified or hypothesized for the Diébougou area, including breeding site typologies, development and survival rates in relation to weather, flight ranges from breeding sites and dispersal related to landscape openness. CONCLUSIONS: Using high-resolution data in an interpretable machine-learning modeling framework proved to be an efficient way to enhance the knowledge of the complex links between the environment and the malaria vectors at a local scale. More broadly, the emerging field of interpretable machine learning has significant potential to help improve our understanding of the complex processes leading to malaria transmission, and to aid in developing operational tools to support the fight against the disease (e.g. vector control intervention plans, seasonal maps of predicted biting rates, early warning systems).


Subject(s)
Environment , Insect Bites and Stings , Machine Learning/statistics & numerical data , Malaria/transmission , Mosquito Vectors/physiology , Rural Population/statistics & numerical data , Animals , Burkina Faso , Humans , Mosquito Control/methods , Seasons
9.
Malar J ; 20(1): 63, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494779

ABSTRACT

BACKGROUND: This study reports an updated description on malaria vector diversity, behaviour, insecticide resistance and malaria transmission in the Diébougou and Dano peri-urban areas, Burkina Faso. METHODS: Mosquitoes were caught monthly using CDC light traps and pyrethrum spray catches. Mosquitoes were identified using morphological taxonomic keys. PCR techniques were used to identify the species of the Anopheles gambiae complex and insecticide resistance mechanisms in a subset of Anopheles vectors. The Plasmodium sporozoite infection status and origins of blood meals of female mosquitoes were determined by ELISA methods. Larvae were collected, breed in the insectary and tested for phenotypic resistance against four insecticides using WHO bioassays. RESULTS: This study contributed to update the entomological data in two peri-urban areas of Southwest Burkina Faso. Anopheles populations were mostly anthropophilic and endophilic in both areas and exhibit high susceptibility to an organophosphate insecticide. This offers an alternative for the control of these pyrethroid-resistant populations. These data might help the National Malaria Control Programme for decision-making about vector control planning and resistance management. CONCLUSIONS: This study contributed to update the entomological data in two peri-urban areas of Southwest Burkina Faso. Anopheles populations were mostly anthropophilic and endophilic in both areas and exhibit high susceptibility to an organophosphate insecticide. This offers an alternative for the control of these pyrethroid-resistant populations. These data might help the National Malaria Control Programme for decision-making about vector control planning and resistance management.


Subject(s)
Anopheles/physiology , Biodiversity , Insecticide Resistance , Malaria/transmission , Mosquito Control , Mosquito Vectors/physiology , Animals , Anopheles/drug effects , Antimalarials/pharmacology , Burkina Faso , Environment , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Mosquito Vectors/drug effects , Seasons
10.
Parasit Vectors ; 14(1): 58, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33461621

ABSTRACT

BACKGROUND: The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. METHODS: We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. RESULTS: An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55-1.12], Tukey's test p-value = 0.19). CONCLUSIONS: If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


Subject(s)
Anopheles/drug effects , Housing , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Vectors/drug effects , Organothiophosphorus Compounds/pharmacology , Animals , Burkina Faso , Female , Humans , Insecticide-Treated Bednets , Malaria/transmission , Mosquito Control/methods , Randomized Controlled Trials as Topic
11.
J Med Entomol ; 58(2): 781-786, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33164064

ABSTRACT

Indoor residual spraying (IRS) was applied in addition to the use of long-lasting insecticidal nets in the South West in Burkina Faso, where Anopheles gambiae s.l. the major malaria vector was resistant to pyrethroids. This study was designed to evaluate the efficacy and residual life of bendiocarb (active ingredient) used for spraying on different wall surfaces (mud and cement). Cone bioassays were done monthly with the susceptible An. gambiae 'Kisumu' strain and the local wild populations to determine the duration for which insecticide was effective in killing mosquitoes. Cone bioassay data showed low efficacy and short persistence of bendiocarb applied on mud and cement walls, lasting 2 mo with the susceptible insectary strain and less than 1 mo with An. gambiae wild populations. In addition, WHO tube assays confirmed resistance of An. gambiae wild populations to 0.1% bendiocarb with mortality rates less than 80% in both study sites (sprayed and unsprayed sites). The pilot study of IRS with bendiocarb showed that the residual efficacy of bendiocarb was very short, and resistance to bendiocarb was confirmed in wild populations of An. gambiae s.l. Therefore, Ficam 80 WP was not suitable for IRS in this area due to the short residual duration related mainly to vectors resistance to bendiocarb. While waiting for innovative malaria control tool, alternative insecticide (organophosphate or neonicotinoid classes) or combinations of insecticides have to be used for insecticide resistance management in Burkina Faso.


Subject(s)
Anopheles/drug effects , Phenylcarbamates/pharmacology , Animals , Biological Assay , Burkina Faso , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Malaria/transmission , Mosquito Control , Mosquito Vectors/drug effects , Pilot Projects , Pyrethrins/pharmacology
12.
PLoS One ; 15(8): e0236920, 2020.
Article in English | MEDLINE | ID: mdl-32745085

ABSTRACT

BACKGROUND: Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to describe malaria vectors bionomics, insecticide resistance and transmission prior to this trial. METHODS: We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were identified using molecular techniques as well as detection of Plasmodium falciparum infection and insecticide resistance target-site mutations. RESULTS: Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot season whereas An. coluzzii and An. gambiae s.s. were the dominant species during the rainy season. Species composition of the Anopheles population varied significantly among seasons. All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site mutations) investigated were found in each members of the An. gambiae complex but at different frequencies. We observed early and late biting phenotypes in the main malaria vector species. Entomological inoculation rates were 2.61, 2.67 and 11.25 infected bites per human per month during dry cold season, dry hot season and rainy season, respectively. CONCLUSION: The entomological indicators of malaria transmission were high despite the universal coverage with LLINs. We detected early and late biting phenotypes in the main malaria vector species as well as physiological insecticide resistance mechanisms. These data will be used to evaluate the impact of complementary tools to LLINs in an upcoming RCT.


Subject(s)
Anopheles , Insecticide Resistance/genetics , Malaria, Falciparum/transmission , Mosquito Vectors/genetics , Animals , Anopheles/classification , Anopheles/genetics , Anopheles/parasitology , Burkina Faso/epidemiology , Culex/classification , Culex/genetics , Culex/parasitology , Culicidae/classification , Culicidae/genetics , Culicidae/parasitology , Ecology , Genotype , Humans , Malaria, Falciparum/prevention & control , Mosquito Control/methods , Mosquito Control/organization & administration , Mosquito Vectors/classification , Mosquito Vectors/parasitology , Plasmodium falciparum/isolation & purification , Seasons
13.
Trop Med Infect Dis ; 5(2)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471266

ABSTRACT

In West Africa, Aedes aegypti remains the major vector of dengue virus. Since 2013, dengue fever has been reemerging in Burkina Faso with annual outbreaks, thus becoming a major public health problem. Its control relies on vector control, which is unfortunately facing the problem of insecticide resistance. At the time of this study, although data on phenotypic resistance were available, information related to the metabolic resistance in Aedes populations from Burkina Faso remained very scarce. Here, we assessed the phenotypic and the metabolic resistance of Ae. aegypti populations sampled from the two main urban areas (Ouagadougou and Bobo-Dioulasso) of Burkina Faso. Insecticide susceptibility bioassays to chlorpyriphos-methyl 0.4%, bendiocarb 0.1% and deltamethrin 0.05% were performed on natural populations of Ae. aegypti using the WHO protocol. The activity of enzymes involved in the rapid detoxification of insecticides, especially non-specific esterases, oxidases (cytochrome P450) and glutathione-S-transferases, was measured on individual mosquitos. The mortality rates for deltamethrin 0.05% were low and ranged from 20.72% to 89.62% in the Bobo-Dioulasso and Ouagadougou sites, respectively. When bendiocarb 0.1% was tested, the mortality rates ranged from 7.73% to 71.23%. Interestingly, in the two urban areas, mosquitoes were found to be fully susceptible to chlorpyriphos-methyl 0.4%. Elevated activity of non-specific esterases and glutathione-S-transferases was reported, suggesting multiple resistance mechanisms involved in Ae. aegypti populations from Bobo-Dioulasso and Ouagadougou (including cytochrome P450). This update to the insecticide resistance status within Ae. aegypti populations in the two biggest cities is important to better plan dengue vectors control in the country and provides valuable information for improving vector control strategies in Burkina Faso, West Africa.

14.
Malar J ; 19(1): 44, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31973756

ABSTRACT

BACKGROUND: With the fight against malaria reportedly stalling there is an urgent demand for alternative and sustainable control measures. As the sterile insect technique (SIT) edges closer to becoming a viable complementary tool in mosquito control, it will be necessary to find standardized techniques of assessing male quality throughout the production system and post-irradiation handling. Flight ability is known to be a direct marker of insect quality. A new version of the reference International Atomic Energy Agency/Food and Agricultural Organization (IAEA/FAO) flight test device (FTD), modified to measure the flight ability and in turn quality of male Anopheles arabiensis within a 2-h period via a series of verification experiments is presented. METHODS: Anopheles arabiensis juveniles were mass reared in a rack and tray system. 7500 male pupae were sexed under a stereomicroscope (2500 per treatment). Stress treatments included irradiation (with 50, 90, 120 or 160 Gy, using a Gammacell 220), chilling (at 0, 4, 8 and 10 °C) and compaction weight (5, 15, 25, and 50 g). Controls did not undergo any stress treatment. Three days post-emergence, adult males were subjected to either chilling or compaction (or were previously irradiated at pupal stage), after which two repeats (100 males) from each treatment and control group were placed in a FTD to measure flight ability. Additionally, one male was caged with 10 virgin females for 4 days to assess mating capacity (five repeats). Survival was monitored daily for a period of 15 days on remaining adults (two repeats). RESULTS: Flight ability results accurately predicted male quality following irradiation, with the first significant difference occurring at an irradiation dose of 90 Gy, a result which was reflected in both survival and insemination rates. A weight of 5 g or more significantly reduced flight ability and insemination rate, with survival appearing less sensitive and not significantly impacted until a weight of 15 g was imposed. Flight ability was significantly reduced after treatments at 4 °C with the insemination rate more sensitive to chilling with survival again less sensitive (8 and 0 °C, respectively). CONCLUSIONS: The reported results conclude that the output of a short flight ability test, adapted from the previously tested Aedes FTD, is an accurate indicator of male mosquito quality and could be a useful tool for the development of the SIT against An. arabiensis.


Subject(s)
Anopheles/physiology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Anopheles/radiation effects , Cold Temperature , Dose-Response Relationship, Radiation , Female , Flight, Animal/radiation effects , Gamma Rays , Malaria/transmission , Male , Mosquito Vectors/radiation effects , Sexual Behavior, Animal/radiation effects , Time Factors
15.
Parasite ; 26: 40, 2019.
Article in English | MEDLINE | ID: mdl-31298995

ABSTRACT

A better understanding of malaria transmission at a local scale is essential for developing and implementing effective control strategies. In the framework of a randomized controlled trial (RCT), we aimed to provide an updated description of malaria transmission in the Korhogo area, northern Côte d'Ivoire, and to obtain baseline data for the trial. We performed human landing collections (HLCs) in 26 villages in the Korhogo area during the rainy season (September-October 2016, April-May 2017) and the dry season (November-December 2016, February-March 2017). We used PCR techniques to ascertain the species of the Anopheles gambiae complex, Plasmodium falciparum sporozoite infection, and insecticide resistance mechanisms in a subset of Anopheles vectors. Anopheles gambiae s.l. was the predominant malaria vector in the Korhogo area. Overall, more vectors were collected outdoors than indoors (p < 0.001). Of the 774 An. gambiae s.l. tested in the laboratory, 89.65% were An. gambiae s.s. and 10.35% were An. coluzzii. The frequencies of the kdr allele were very high in An. gambiae s.s. but the ace-1 allele was found at moderate frequencies. An unprotected individual living in the Korhogo area received an average of 9.04, 0.63, 0.06 and 0.12 infected bites per night in September-October, November-December, February-March, and April-May, respectively. These results demonstrate that the intensity of malaria transmission is extremely high in the Korhogo area, especially during the rainy season. Malaria control in highly endemic areas such as Korhogo needs to be strengthened with complementary tools in order to reduce the burden of the disease.


Subject(s)
Anopheles/parasitology , Ecology , Insecticide Resistance , Insecticides , Malaria/transmission , Animals , Anopheles/genetics , Bites and Stings/epidemiology , Cote d'Ivoire , Female , Humans , Malaria/prevention & control , Mosquito Control , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Plasmodium falciparum/genetics , Randomized Controlled Trials as Topic , Seasons
16.
Acta Trop ; 197: 105054, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31175862

ABSTRACT

Vector control constitutes a fundamental approach in reducing vector density and the efficient option to break malaria transmission in Africa. Malaria vectors developed resistance to almost all classes of insecticides recommended by WHO for vector control in most places of African countries and may compromise the vector control strategies. This study updated the resistance status of Anopheles gambiae complex populations to insecticides recommended for vector control in the western part of Burkina Faso. Insecticide susceptibility bioassays were performed on seven natural populations of An. gambiae complex from western Burkina Faso in the 2016 rainy season using the WHO protocol. Biochemical assays were carried out according to the WHO protocol on the same populations to estimate detoxifying enzymes activities including non-specific esterases (NSEs), oxidases (cytochrome P450) and Glutathione-S-Transferases (GSTs). Polymerase Chain Reactions (PCRs) were performed for the identification of the An. gambiae complex species as well as the detection of kdr-west and ace-1 mutations. Susceptibility bioassays showed that An. gambiae complex was multi-resistant to pyrethroids, DDT and carbamates in almost all areas. The mortality rates ranged from 10 to 38%, 2.67 to 59.57% and 64.38 to 98.02% for Deltamethrin, DDT and Bendiocarb respectively. A full susceptibility (100%) to an organophosphate, the Chlorpyrifos-methyl, was observed at the different sites. Three (3) species of the An. gambiae complex were identified: An. gambiae s.s, An. coluzzii and An. arabiensis. The frequencies of the kdr-w mutation were highly widespread (0.66 to 0.98) among the three species of the complex. The ace-1 mutation was detected at low frequencies (0 to 0.12) in An. gambiae s.s and An. coluzzii. A high level of GSTs and NSEs were observed within the different populations of the An. gambiae complex. Several mechanisms of insecticide resistance were found simultaneously in the same populations of An. gambiae complex conferring high multi-resistance to DDT, Carbamate and Pyrethroids. The full susceptibility of An. gambiae complex to organophosphates is a useful data for the national malaria control program in selecting the most appropriate products to both maintain the effectiveness of vector control strategies and best manage insecticide resistance as well as developing new alternative strategies for the control of major malaria vectors in Burkina Faso.


Subject(s)
Anopheles , Insecticide Resistance , Malaria/prevention & control , Animals , Anopheles/genetics , Burkina Faso , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors , Mutation
17.
Front Vet Sci ; 6: 140, 2019.
Article in English | MEDLINE | ID: mdl-31192232

ABSTRACT

Background: A severe outbreak of dengue occurred in Burkina Faso in 2016, with the most cases reported in Ouagadougou, that highlights the necessity to implement vector surveillance system. This study aims to estimate the risk of arboviruses transmission and the insecticide susceptibility status of potential vectors in four sites in Burkina Faso. Methods: From June to September 2016, house-to-house cross sectional entomological surveys were performed in four cities stretching along a southwest-to-northeast railway transect. The household surveys analyzed the presence of Aedes spp. larvae in containers holding water and the World Health Organization (WHO) larval abundance indices were estimated. WHO tube assays was used to evaluate the insecticide susceptibility within Aedes populations from these localities. Results: A total of 31,378 mosquitoes' larvae were collected from 1,330 containers holding water. Aedes spp. was the most abundant (95.19%) followed by Culex spp. (4.75%). Aedes aegypti a key vector of arboviruses (ARBOV) in West Africa was the major Aedes species found (98.60%). The relative larval indices, house index, container and Breteau indexes were high, up to 70, 35, and 10, respectively. Aedes aegypti tended to breed mainly in discarded tires and terracotta jars. Except in Banfora the western city, Ae. aegypti populations were resistant to deltamethrin 0.05% in the other localities with low mortality rate under 20% in Ouagadougou whereas they were fully susceptible to malathion 5% whatever the site. Intermediate resistance was observed in the four sites with mortality rates varying between 78 and 94% with bendiocarb 0.1%. Conclusions: This study provided basic information on entomological indices that can help to monitor the risks of ARBOV epidemics in the main cities along the railway in Burkina Faso. In these cities, all larval indices exceeded the risk level of ARBOV outbreak. Aedes aegypti the main species collected was resistant to deltamethrin 0.05% and bendiocarb 0.1% whereas they were fully susceptible to malathion 5%. The monitoring of insecticide resistance is also important to be integrated to the vector surveillance system in Burkina Faso.

18.
Parasit Vectors ; 11(1): 296, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29751825

ABSTRACT

BACKGROUND: Urbanization is a main trend in developing countries and leads to health transition. Although non-communicable diseases are increasing in cities of low-income countries, vector-borne diseases such as malaria, are still present. In the case of malaria, transmission is lower than in rural areas, but is uneven and not well documented. In this study, we wanted to evaluate intra-urban malaria transmission in a West African country (Burkina Faso). METHODS: A cross-sectional study on 847 adults (35 to 59 year-old) and 881 children (6 months to 5 year-old) living in 1045 households of four districts (Dogona, Yeguere, Tounouma and Secteur 25) of Bobo-Dioulasso was performed between October and November 2013. The districts were selected according to a geographical approach that took into account the city heterogeneity. Malaria prevalence was evaluated using thick and thin blood smears. Human exposure to Anopheles bites was measured by assessing the level of IgG against the Anopheles gSG6-P1 salivary peptide. Adult mosquitoes were collected using CDC traps and indoor insecticide spraying in some houses of the four neighbourhoods. The Anopheles species and Plasmodium falciparum infection rate were determined using PCR assays. RESULTS: In this study, 98.5% of the malaria infections were due to Plasmodium falciparum. Malaria transmission occurred in the four districts. Malaria prevalence was higher in children than in adults (19.2 vs 4.4%), and higher in the central districts than in the peripheral ones (P = 0.001). The median IgG level was more elevated in P. falciparum-infected than in non-infected individuals (P < 0.001). Anopheles arabiensis was the main vector identified (83.2%; 227 of the 273 tested mosquito specimens). Five P. falciparum-infected mosquitoes were caught, and they were all caught in the central district of Tounouma where 28.6% (14/49) of the tested blood-fed mosquito specimens had a human blood meal. CONCLUSIONS: This study showed that urban malaria transmission occurred in Bobo-Dioulasso, in all the four studied areas, but mainly in central districts. Environmental determinants primarily explain this situation, which calls for better urban management.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Adult , Animals , Anopheles/parasitology , Anopheles/physiology , Burkina Faso/epidemiology , Child, Preschool , Cities , Cross-Sectional Studies , Female , Geography , Humans , Infant , Malaria, Falciparum/parasitology , Male , Middle Aged , Mosquito Vectors/parasitology , Mosquito Vectors/physiology
19.
PLoS One ; 12(3): e0173098, 2017.
Article in English | MEDLINE | ID: mdl-28253316

ABSTRACT

Many studies have shown the role of agriculture in the selection and spread of resistance of Anopheles gambiae s.l. to insecticides. However, no study has directly demonstrated the presence of insecticides in breeding sources as a source of selection for this resistance. It is in this context that we investigated the presence of pesticide residues in breeding habitats and their formal involvement in vector resistance to insecticides in areas of West Africa with intensive farming. This study was carried out from June to November 2013 in Dano, southwest Burkina Faso in areas of conventional (CC) and biological cotton (BC) growing. Water and sediment samples collected from breeding sites located near BC and CC fields were submitted for chromatographic analysis to research and titrate the residual insecticide content found there. Larvae were also collected in these breeding sites and used in toxicity tests to compare their mortality to those of the susceptible strain, Anopheles gambiae Kisumu. All tested mosquitoes (living and dead) were analyzed by PCR for species identification and characterization of resistance genes. The toxicity analysis of water from breeding sites showed significantly lower mortality rates in breeding site water from biological cotton (WBC) growing sites compared to that from conventional cotton (WCC) sites respective to both An. gambiae Kisumu (WBC: 80.75% vs WCC: 92.75%) and a wild-type strain (49.75% vs 66.5%). The allele frequencies L1014F, L1014S kdr, and G116S ace -1R mutations conferring resistance, respectively, to pyrethroids and carbamates / organophosphates were 0.95, 0.4 and 0.12. Deltamethrin and lambda-cyhalothrin were identified in the water samples taken in October/November from mosquitoes breeding in the CC growing area. The concentrations obtained were respectively 0.0147ug/L and 1.49 ug/L to deltamethrin and lambdacyhalothrin. Our results provided evidence by direct analysis (biological and chromatographic tests) of the role of agriculture as a source of selection pressure on vectors to insecticides used in growing areas.


Subject(s)
Agriculture , Anopheles/drug effects , Gossypium/chemistry , Pesticides , Pyrethrins/pharmacology , Africa, Western , Animals , Anopheles/genetics , Burkina Faso , Drug Resistance , Insecticide Resistance , Mutation , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...