Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Antibiotics (Basel) ; 11(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35625250

ABSTRACT

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that may cause life-threatening diseases and some minor infections in living organisms. However, it shows notorious effects when it becomes resistant to antibiotics. Strain variants of bacteria, viruses, fungi, and parasites that have become resistant to existing multiple antimicrobials are termed as superbugs. Methicillin is a semisynthetic antibiotic drug that was used to inhibit staphylococci pathogens. The S. aureus resistant to methicillin is known as methicillin-resistant Staphylococcus aureus (MRSA), which became a superbug due to its defiant activity against the antibiotics and medications most commonly used to treat major and minor infections. Successful MRSA infection management involves rapid identification of the infected site, culture and susceptibility tests, evidence-based treatment, and appropriate preventive protocols. This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.

2.
Braz. j. pharm. sci ; 48(2): 217-225, Apr.-June 2012. graf, tab
Article in English | LILACS | ID: lil-643014

ABSTRACT

Bitter taste of ofloxacin, a broad spectrum bactericidal agent, is masked and orally disintegrating tablets were formulated. The bitter taste is masked by forming complex between drug and weak cation exchange resins, Tulsion 335 and Indion 204. Effect of pH and drug:resin ratio on the drug loading was studied. Maximum drug loading was observed at pH 6. Ratio of 1:2 of drug:resin masked almost complete bitterness of ofloxacin. Formation of complexes was confirmed by IR spectroscopy. Physical characterization of taste masked complexes was carried out. Present work envisages the taste masking of ofloxacin and development of orally disintegrating tablets. The effect of pH and resin quantities on drug loading were studied to find the optimum conditions of drug loading for complete taste masking. Effect of superdisintegrants like sodium starch glycolate, croscarmellose sodium and polyplasdone XL at varying level on physical parameters of compressed tablets was also assessed. The formulations containing 5 % w/w polyplasdone XL showed about 90 % of drug release within 5 minutes. No significant differences were observed in the physical parameters of resinates as well as tablets prepared from Tulsion 335 and Indion 204.


O gosto amargo de ofloxacina, agente bactericida de largo espectro, é mascarado e formularam-se comprimidos dispersíveis. O sabor amargo é mascarado pela formação de complexo entre o fármaco e resinas de troca catiônica fraca, Tulsion 335 e Indion 204. Efeito do pH e da proporção fármaco: resina sobre a carga de fármaco foi estudada. Carga de fármaco máxima foi observada em pH 6. Proporção 1:2 do fármaco: resina mascarou quase completamente o gosto amargo de ofloxacina. A formação de complexos foi confirmada por espectroscopia no IV. Caracterização física dos complexos de sabor mascarado foi realizada. O presente trabalho preconiza o mascaramento do gosto de ofloxacina e desenvolvimento decomprimidos por via oral, se desintegrando. O efeito do pH e da resina quantidades de carga de fármaco foram estudadas paraencontrar as condições óptimas de carga de fármaco para dissimulação do saborcompleto. Efeito da superdisintegrants como amido glicolato de sódio, croscarmelose sódica e Polyplasdone XL em diferentes níveis de parâmetros físicos de comprimidos também avaliados foi avaliada. As formulações contendo 5 %w/w Polyplasdone XL mostraram cerca de 90% de libertação do fármaco no prazo de 5 minutos. Não foram observadas diferenças significativas nos parâmetros físicos de resinatosbem como comprimidos preparados a partir de Tulsion 335 e Indion 204.


Subject(s)
Tablets/pharmacokinetics , Ofloxacin/analysis , Ion Exchange Resins/pharmacokinetics , Hepatocyte Growth Factor/classification
3.
BMC Complement Altern Med ; 6: 32, 2006 Sep 20.
Article in English | MEDLINE | ID: mdl-16987414

ABSTRACT

BACKGROUND: The present study investigates the cardioprotective effects of Hibiscus rosa sinensis in myocardial ischemic reperfusion injury, particularly in terms of its antioxidant effects. METHODS: The medicinal values of the flowers of Hibiscus rosa sinensis (Chinese rose) have been mentioned in ancient literature as useful in disorders of the heart. Dried pulverized flower of Hibiscus rosa sinensis was administered orally to Wistar albino rats (150-200 gms) in three different doses [125, 250 and 500 mg/kg in 2% carboxy methyl cellulose (CMC)], 6 days per week for 4 weeks. Thereafter, rats were sacrificed; either for the determination of baseline changes in cardiac endogenous antioxidants [superoxide dismutase, reduced glutathione and catalase] or the hearts were subjected to isoproterenol induced myocardial necrosis. RESULTS: There was significant increase in the baseline contents of thiobarbituric acid reactive substances (TBARS) [a measure of lipid per oxidation] with both doses of Hibiscus Rosa sinensis. In the 250 mg/kg treated group, there was significant increase in superoxide dismutase, reduced glutathione, and catalase levels but not in the 125 and 500 mg/kg treated groups. Significant rise in myocardial thiobarbituric acid reactive substances and loss of superoxide dismutase, catalase and reduced glutathione (suggestive of increased oxidative stress) occurred in the vehicle treated hearts subjected to in vivo myocardial ischemic reperfusion injury. CONCLUSION: It may be concluded that flower of Hibiscus rosa sinensis (250 mg/kg) augments endogenous antioxidant compounds of rat heart and also prevents the myocardium from isoproterenol induced myocardial injury.


Subject(s)
Antioxidants/pharmacology , Flowers , Hibiscus , Myocardial Reperfusion Injury/prevention & control , Phytotherapy , Plant Preparations/pharmacology , Administration, Oral , Animals , Catalase/metabolism , Disease Models, Animal , Glutathione/metabolism , Isoproterenol , Male , Myocardial Reperfusion Injury/chemically induced , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress/drug effects , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...