Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Mol Pharmacol ; 103(4): 199-210, 2023 04.
Article in English | MEDLINE | ID: mdl-36669880

ABSTRACT

6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.


Subject(s)
Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mercaptopurine/pharmacology , CRISPR-Cas Systems/genetics , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recurrence , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/therapeutic use , Ribose-Phosphate Pyrophosphokinase/genetics , Ribose-Phosphate Pyrophosphokinase/metabolism
3.
Medicine (Baltimore) ; 101(11)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35356922

ABSTRACT

RATIONALE: The gastrointestinal (GI) tract is a common target organ of graft-vs-host disease (GVHD) in hematopoietic stem cell transplantation (HSCT) patients, and GI tract GVHD is often resistant to standard treatments such as corticosteroids. Moreover, longterm use of systemic corticosteroids sometimes induces adverse events such as infection. Beclomethasone dipropionate (BDP) is a potent, topically active corticosteroid, which is metabolized to an active derivative in the intestinal mucosa. Oral BDP therapy is reportedly effective against GI tract GVHD in adult HSCT patients, but its efficacy and safety in pediatric patients remain undefined. Here, we report three pediatric and young adult cases who were treated with oral BDP. PATIENT CONCERNS: Three (6-, 7-, and 18-year-old) patients developed stage 2 to 4 lower GI tract GVHD, which was resistant to standard immunosuppressive therapies. DIAGNOSIS: Lower GI tract GVHD in these patients was histopathologically proven by endoscopic biopsy. INTERVENTIONS: Oral administration of enteric-coated capsules of BDP (3-8 mg/day) was started for the treatment of lower GI tract GVHD. OUTCOMES: With the introduction of oral BDP therapy, their GI tract symptoms promptly resolved (abdominal pain, within 3-7 days; diarrhea, within 2-3 weeks). Subsequently, systemic immunosuppressive agents such as corticosteroids and mycophenolate mofetil were successfully tapered off. During oral BDP therapy, although cytomegalovirus antigenemia and Acinetobacter Iwoffii sepsis developed in 2 cases, both were curable with conventional treatments. In a young adult case, concomitant BK virus-associated hemorrhagic cystitis resolved after oral BDP was introduced and systemic immunosuppressive agents were reduced. Transient growth restriction was observed in a pediatric case who was treated with oral BDP for approximately 300days. LESSONS: Our experiences suggest that oral BDP therapy is an effective approach for GI tract GVHD that is resistant to standard immunosuppressive therapies. Of clinical importance, our case suggests the possibility that oral BDP therapy may improve the immunosuppressive condition in GI tract GVHD patients by contributing to the reduction of systemic immunosuppressive medications as a result of prompt improvement of GI tract GVHD symptoms.


Subject(s)
Gastrointestinal Diseases , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Beclomethasone/adverse effects , Beclomethasone/therapeutic use , Child , Gastrointestinal Diseases/chemically induced , Gastrointestinal Diseases/etiology , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Young Adult
4.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Article in English | MEDLINE | ID: mdl-34636169

ABSTRACT

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Subject(s)
5'-Nucleotidase/genetics , Drug Resistance, Neoplasm/genetics , Mercaptopurine/pharmacology , Mutation , Polymorphism, Genetic , Pyrophosphatases/genetics , Ribose-Phosphate Pyrophosphokinase/genetics , Alleles , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Dose-Response Relationship, Drug , Genotype , Humans
6.
Cancer Cell Int ; 20(1): 434, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-33499894

ABSTRACT

BACKGROUND: The genetic variants of the ARID5B gene have recently been reported to be associated with disease susceptibility and treatment outcome in childhood acute lymphoblastic leukemia (ALL). However, few studies have explored the association of ARID5B with sensitivities to chemotherapeutic agents. METHODS: We genotyped susceptibility-linked rs7923074 and rs10821936 as well as relapse-linked rs4948488, rs2893881, and rs6479778 of ARDI5B by direct sequencing of polymerase chain reaction (PCR) products in 72 B-cell precursor-ALL (BCP-ALL) cell lines established from Japanese patients. We also quantified their ARID5B expression levels by real-time reverse transcription PCR, and determined their 50% inhibitory concentration (IC50) values by alamarBlue assays in nine representative chemotherapeutic agents used for ALL treatment. RESULTS: No significant associations were observed in genotypes of the susceptibility-linked single nucleotide polymorphisms (SNPs) and the relapsed-linked SNPs with ARID5B gene expression levels. Of note, IC50 values of vincristine (VCR) (median IC50: 39.6 ng/ml) in 12 cell lines with homozygous genotype of risk allele (C) in the relapse-linked rs4948488 were significantly higher (p = 0.031 in Mann-Whitney U test) than those (1.04 ng/ml) in 60 cell lines with heterozygous or homozygous genotypes of the non-risk allele (T). Furthermore, the IC50 values of mafosfamide [Maf; active metabolite of cyclophosphamide (CY)] and cytarabine (AraC) tended to be associated with the genotype of rs4948488. Similar associations were observed in genotypes of the relapse-linked rs2893881 and rs6479778, but not in those of the susceptibility-linked rs7923074 and rs10821936. In addition, the IC50 values of methotrexate (MTX) were significantly higher (p = 0.023) in 36 cell lines with lower ARID5B gene expression (median IC50: 37.1 ng/ml) than those in the other 36 cell lines with higher expression (16.9 ng/ml). CONCLUSION: These observations in 72 BCP-ALL cell lines suggested that the risk allele of the relapse-linked SNPs of ARID5B may be involved in a higher relapse rate because of resistance to chemotherapeutic agents such as VCR, CY, and AraC. In addition, lower ARID5B gene expression may be associated with MTX resistance.

7.
Cancer Med ; 8(11): 5274-5288, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31305009

ABSTRACT

t(17;19)(q21-q22;p13), responsible for TCF3-HLF fusion, is a rare translocation in childhood B-cell precursor acute lymphoblastic leukemia(BCP-ALL). t(1;19)(q23;p13), producing TCF3-PBX1 fusion, is a common translocation in childhood BCP-ALL. Prognosis of t(17;19)-ALL is extremely poor, while that of t(1;19)-ALL has recently improved dramatically in intensified chemotherapy. In this study, TCF3-HLF mRNA was detectable at a high level during induction therapy in a newly diagnosed t(17;19)-ALL case, while TCF3-PBX1 mRNA was undetectable at the end of induction therapy in most newly diagnosed t(1;19)-ALL cases. Using 4 t(17;19)-ALL and 16 t(1;19)-ALL cell lines, drug response profiling was analyzed. t(17;19)-ALL cell lines were found to be significantly more resistant to vincristine (VCR), daunorubicin (DNR), and prednisolone (Pred) than t(1;19)-ALL cell lines. Sensitivities to three (Pred, VCR, and l-asparaginase [l-Asp]), four (Pred, VCR, l-Asp, and DNR) and five (Pred, VCR, l-Asp, DNR, and cyclophosphamide) agents, widely used in induction therapy, were significantly poorer for t(17;19)-ALL cell lines than for t(1;19)-ALL cell lines. Consistent with poor responses to VCR and DNR, gene and protein expression levels of P-glycoprotein (P-gp) were higher in t(17;19)-ALL cell lines than in t(1;19)-ALL cell lines. Inhibitors for P-gp sensitized P-gp-positive t(17;19)-ALL cell lines to VCR and DNR. Knockout of P-gp by CRISPRCas9 overcame resistance to VCR and DNR in the P-gp-positive t(17;19)-ALL cell line. A combination of cyclosporine A with DNR prolonged survival of NSG mice inoculated with P-gp-positive t(17;19)-ALL cell line. These findings indicate involvement of P-gp in resistance to VCR and DNR in Pgp positive t(17;19)-ALL cell lines. In all four t(17;19)-ALL cell lines, RAS pathway mutation was detected. Furthermore, among 16 t(1;19)-ALL cell lines, multiagent resistance was usually observed in the cell lines with RAS pathway mutation in comparison to those without it, suggesting at least a partial involvement of RAS pathway mutation in multiagent resistance of t(17;19)-ALL.


Subject(s)
Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 19 , Drug Resistance, Neoplasm/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Alleles , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gene Frequency , Genotype , Humans , Immunophenotyping , Mice , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
8.
Pediatr Transplant ; 23(3): e13378, 2019 05.
Article in English | MEDLINE | ID: mdl-30786117

ABSTRACT

JMML is an aggressive hematopoietic malignancy of early childhood, and allogeneic HSCT is the only curative treatment for this disease. Umbilical cord blood is one of donor sources for HSCT in JMML patients who do not have an HLA-compatible relative, but engraftment failure remains a major problem. Here, we report two cases of JMML who were successfully rescued by HSCT from an HLA-mismatched parent after development of primary engraftment failure following unrelated CBT. Both patients had severe splenomegaly and underwent unrelated CBT from an HLA-mismatched donor. Immediately after diagnosis of engraftment failure, both patients underwent HSCT from their parent. For the second HSCT, we used RIC regimens consisting of FLU, CY, and a low dose of rabbit ATG with or without TBI and additionally administered ETP considering their persistent severe splenomegaly. Both patients achieved engraftment without severe treatment-related adverse effects. After engraftment of second HSCT, their splenomegaly was rapidly regressed, and both patients showed no sign of relapse for over 4 years. These observations demonstrate that HSCT from an HLA-mismatched parent could be a feasible salvage treatment for primary engraftment failure in JMML patients.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Leukemia, Myelomonocytic, Juvenile/therapy , Child, Preschool , Female , Fetal Blood , Hepatomegaly/surgery , Humans , Immunosuppressive Agents/therapeutic use , Infant , Male , Mutation , Recurrence , Splenomegaly/surgery , Transplantation Conditioning , Treatment Outcome
9.
Exp Clin Transplant ; 17(2): 281-283, 2019 04.
Article in English | MEDLINE | ID: mdl-28760119

ABSTRACT

Here, we describe a case of primary graft failure with severe sepsis in a boy who experienced frequent relapses of osteosarcoma. The patient had undergone haploidentical bone marrow transplant after engraftment of unrelated cord blood transplant performed 10 months earlier. Considering his severe condition, we transfused autologous peripheral stem cells along with a single dose of etoposide (50 mg/m2). Granulocyte engraftment was confirmed on human leukocyte antigen-microsatellite analysis of bone marrow on day 14. Although the patient died due to respiratory failure, transfusion of autologous hematopoietic stem cells is a reasonable rescue option for graft failure even in patients whose background hematopoiesis is reconstituted by a first donor.


Subject(s)
Bone Neoplasms/surgery , Hematopoietic Stem Cell Transplantation , Osteosarcoma/surgery , Peripheral Blood Stem Cell Transplantation , Tibia/pathology , Bone Neoplasms/pathology , Child , Fatal Outcome , Hematopoiesis , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Osteosarcoma/secondary , Reoperation , Transplantation Conditioning , Transplantation, Autologous , Transplantation, Homologous , Treatment Failure
10.
Cancer Med ; 7(4): 1297-1316, 2018 04.
Article in English | MEDLINE | ID: mdl-29473342

ABSTRACT

Cytosine arabinoside (Ara-C) is one of the key drugs for the treatment of acute myeloid leukemia. It is also used for consolidation therapy of acute lymphoblastic leukemia (ALL). Ara-C is a deoxyadenosine analog and is phosphorylated to form cytosine arabinoside triphosphate (Ara-CTP) as an active form. In the first step of the metabolic pathway, Ara-C is phosphorylated to Ara-CMP by deoxycytidine kinase (DCK). However, the current cumulative evidence in the association of the Ara-C sensitivity in ALL appears inconclusive. We analyzed various cell lines for the possible involvement of DCK in the sensitivities of B-cell precursor ALL (BCP-ALL) to Ara-C. Higher DCK expression was associated with higher Ara-C sensitivity. DCK knockout by genome editing with a CRISPR-Cas9 system in an Ara-C-sensitive-ALL cell line induced marked resistance to Ara-C, but not to vincristine and daunorubicin, indicating the involvement of DCK expression in the Ara-C sensitivity of BCP-ALL. DCK gene silencing due to the hypermethylation of a CpG island and reduced DCK activity due to a nonsynonymous variant allele were not associated with Ara-C sensitivity. Clofarabine is a second-generation deoxyadenosine analog rationally synthesized to improve stability and reduce toxicity. The IC50 of clofarabine in 79 BCP-ALL cell lines was approximately 20 times lower than that of Ara-C. In contrast to Ara-C, although the knockout of DCK induced marked resistance to clofarabine, sensitivity to clofarabine was only marginally associated with DCK gene expression level, suggesting a possible efficacy of clofarabine for BCP-ALL that shows relative Ara-C resistance due to low DCK expression.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Clofarabine/pharmacology , Deoxycytidine Kinase/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Amino Acid Sequence , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , CRISPR-Cas Systems , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , DNA Methylation , Dose-Response Relationship, Drug , Exons , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Mutation , Polymorphism, Genetic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic
11.
Hematol Oncol ; 36(1): 245-251, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28850694

ABSTRACT

Glucocorticoid (GC) shows antileukaemic activity via binding to the GC receptor (GR). The human GR gene has 4 splicing variants besides the functional isoform GRα, but their significance in GC sensitivity of acute lymphoblastic leukaemia (ALL) has been inconsistent. Additionally, several studies evaluated the relevance of GR gene single nucleotide polymorphisms (SNPs) in the GC sensitivity of ALL, but the current cumulative evidence appears inconclusive. Addressing limitations in previous studies, we used a large series of B-cell precursor ALL (BCP-ALL) cell lines established from Japanese patients to comprehensively examine all 5 splicing variants of the GR gene and candidate SNPs, and their association with GC-sensitivity. We performed real-time reverse transcription polymerase chain reaction (RT-PCR) analyses with 10 sets of primers that differentially quantify the 5 isoforms in different combinations, and the strongest correlations with GC sensitivity were observed for the real-time RT-PCR of exons 7 and 8 (prednisolone sensitivity; r = -0.534, R2  = 0.29, P = 1.4 × 10-6 ) and exons 8 and 9a (r = -0.583, R2  = 0.34, P = 7.6 × 10-8 ), both specific for GRα and GRγ isoforms. In contrast, the real-time RT-PCR of junction of exons 3g and 4 and exon 4, specific for GRγ isoform alone, did not show significant correlation with GC sensitivity (prednisolone sensitivity; r = -0.403, R2  = 0.16, P = 4.6 × 10-4 ). These observations are consistent with the notion that GRα plays a central role in the GC-mediated proapoptotic activity in BCP-ALL. In addition, a promoter region SNP genotype (rs72555796) showed a significant association with GC sensitivity (prednisolone sensitivity; P = .010) and tended to show an association with GR gene expression (RT-PCR of exons 7 and 8; P = .170). These findings indicate that isoform profiles and SNP genotypes of the GR gene may be useful indicators of GC sensitivity in BCP-ALL.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Glucocorticoid/genetics , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
12.
PLoS One ; 12(12): e0188680, 2017.
Article in English | MEDLINE | ID: mdl-29236701

ABSTRACT

Prognosis of childhood acute lymphoblastic leukemia (ALL) has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ), a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+) ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin) in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ), a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19) ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19) ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19) ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good sensitivity to CFZ and BTZ, and that CFZ combination chemotherapy may be a new therapeutic option with higher anti-leukemic activity for refractory ALL that contain P-glycoprotein-negative leukemia cells.


Subject(s)
Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Bortezomib/therapeutic use , Oligopeptides/therapeutic use , B-Lymphocytes/metabolism , Cell Line, Tumor , Humans
13.
Leuk Res ; 60: 24-30, 2017 09.
Article in English | MEDLINE | ID: mdl-28641145

ABSTRACT

A deletion polymorphism in the BIM gene was identified as an intrinsic mechanism for resistance to tyrosine kinase inhibitor in chronic myeloid leukemia patients in East Asia. BIM is also involved in the responses to glucocorticoid and chemotherapy in acute lymphoblastic leukemia (ALL), suggesting a possible association between deletion polymorphism of BIM and the chemosensitivity of ALL. Thus, we analyzed 72 B-cell precursor (BCP)-ALL cell lines established from Japanese patients. Indeed, higher BIM gene expression was associated with good in vitro sensitivities to glucocorticoid and chemotherapeutic agents used in induction therapy. We also analyzed the methylation status of the BIM gene promoter by next generation sequencing of genome bisulfite PCR products, since genetic polymorphism could be insignificant when epigenetically inactivated. Hypermethylation of the BIM gene promoter was associated with lower BIM gene expression and poorer sensitivity to vincristine. Of note, however, the prevalence of a deletion polymorphism was not associated with the BIM gene expression level or drug sensitivities in BCP-ALL cell lines, in which the BIM gene was unmethylated. These observations suggest that an association of a deletion polymorphism of BIM and the response to induction therapy in BCP-ALL may be clinically minimal.


Subject(s)
Bcl-2-Like Protein 11/genetics , Drug Resistance, Neoplasm/genetics , Gene Deletion , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Antineoplastic Agents/pharmacology , Asian People , Bcl-2-Like Protein 11/physiology , Cell Line, Tumor , DNA Methylation , Glucocorticoids/pharmacology , Humans , Polymorphism, Genetic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic , Vincristine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...