Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 261: 106641, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506482

ABSTRACT

Anthropogenic practices have increased metal contamination in marine ecosystems. Most sharks have long lifespans, occupy an important ecological position at the top of marine food webs, and can accumulate metals. However, reference levels of metal contaminants in the tissues of sharks, particularly, apex predators such as the white shark (Carcharodon carcharias), are lacking. In this study, concentrations of copper (Cu), cadmium (Cd), nickel (Ni), lead (Pb), silver (Ag), and zinc (Zn) were measured in the muscle tissue of white (n = 42) and tiger (Galeocerdo cuvier; n = 3) sharks. Metal exposure in various species, including sharks, has been correlated with increased oxidative stress. Therefore, the main objectives of this study were to assess metal accumulation and antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) in the muscle tissue of the population of white sharks and tiger sharks inhabiting the Western North Atlantic. The measured parameters were qualitatively compared between species. The small sample size of tiger sharks (collected from only one site) limited statistical analyses, therefore, white sharks were the primary focus of this study. Differences in tissue metal (Cu, Cd, Ni, and Zn) concentrations and antioxidant enzyme activities were detected based on collection site, with significant positive correlations between Cd and enzymes, SOD and CAT, and Zn and enzymes, SOD and GPx in C. carcharias. Differences in Ni concentration were detected based on sex, with females having higher Ni levels. Additionally, plasma osmolality was not correlated with tissue metal concentrations; however, osmolality decreased with increasing length in C. carcharias. This study is the first to report baseline levels of Cu, Zn, Cd, Ni, Ag, and Pb in muscle of North Atlantic white sharks and provides new insights into oxidative stress responses of these sensitive species to metal contaminants.


Subject(s)
Sharks , Water Pollutants, Chemical , Female , Animals , Antioxidants , Cadmium/analysis , Ecosystem , Lead , Water Pollutants, Chemical/toxicity , Zinc/analysis , Nickel/toxicity , Superoxide Dismutase , Glutathione Peroxidase , Sharks/physiology
2.
Arch Environ Contam Toxicol ; 79(4): 371-390, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32865634

ABSTRACT

Metals occur naturally in the environment; however, anthropogenic practices have greatly increased metal concentrations in waterways, sediments, and biota. Metals pose health risks to marine organisms and have been associated with oxidative stress, which can lead to protein denaturation, DNA mutations, and cellular apoptosis. Sharks are important species ecologically, recreationally, and commercially. Because they occupy a high trophic level, assessing muscle tissue metal concentrations in sharks may reflect metal transfer in marine food webs. In this study, concentrations of cadmium, copper, lead, nickel, selenium, silver, and zinc were measured in the muscle of Rhizoprionodon terraenovae (Atlantic sharpnose shark) from 12 sites along the coast of the southeastern United States. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) also were examined in the muscle tissue of R. terraenovae. A total of 165 samples were analyzed, and differences in trace element bioaccumulation and enzyme activity were observed across sites. R. terraenovae samples collected from South Florida and South Carolina had the highest cumulative trace element concentrations whereas those collected from North Carolina and Alabama had the lowest cumulative concentrations. Trace element concentrations in shark muscle tissue were significantly correlated to antioxidant enzyme activity, particularly with glutathione peroxidase, suggesting that this enzyme may serve as a non-lethal, biomarker of metal exposure in R. terraenovae. This is one of the most extensive studies providing reference levels of trace elements and oxidative stress enzymes in a single elasmobranch species within the U.S.


Subject(s)
Muscles/metabolism , Sharks/metabolism , Trace Elements/metabolism , Animals , Antioxidants/metabolism , Catalase/metabolism , Environmental Monitoring , Florida , Food Chain , Oxidative Stress , Selenium/metabolism , South Carolina , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...