Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 3344, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409792

ABSTRACT

Tropical ecosystems are large carbon stores that are vulnerable to climate change. The sparseness of ground-based measurements has precluded verification of these ecosystems being a net annual source (+ve) or sink (-ve) of atmospheric carbon. We show that two independent satellite data sets of atmospheric carbon dioxide (CO2), interpreted using independent models, are consistent with the land tropics being a net annual carbon emission of [Formula: see text] [Formula: see text] and [Formula: see text] petagrams (PgC) in 2015 and 2016, respectively. These pan-tropical estimates reflect unexpectedly large net emissions from tropical Africa of [Formula: see text] PgC in 2015 and [Formula: see text] PgC in 2016. The largest carbon uptake is over the Congo basin, and the two loci of carbon emissions are over western Ethiopia and western tropical Africa, where there are large soil organic carbon stores and where there has been substantial land use change. These signals are present in the space-borne CO2 record from 2009 onwards.


Subject(s)
Atmosphere/chemistry , Carbon Cycle , Carbon Dioxide/analysis , Climate Change , Africa , Datasets as Topic , Forests , Soil/chemistry , Tropical Climate
2.
Article in English | MEDLINE | ID: mdl-30297463

ABSTRACT

The outstanding tropical land climate characteristic over the past decades is rapid warming, with no significant large-scale precipitation trends. This warming is expected to continue but the effects on tropical vegetation are unknown. El Niño-related heat peaks may provide a test bed for a future hotter world. Here we analyse tropical land carbon cycle responses to the 2015/16 El Niño heat and drought anomalies using an atmospheric transport inversion. Based on the global atmospheric CO2 and fossil fuel emission records, we find no obvious signs of anomalously large carbon release compared with earlier El Niño events, suggesting resilience of tropical vegetation. We find roughly equal net carbon release anomalies from Amazonia and tropical Africa, approximately 0.5 PgC each, and smaller carbon release anomalies from tropical East Asia and southern Africa. Atmospheric CO anomalies reveal substantial fire carbon release from tropical East Asia peaking in October 2015 while fires contribute only a minor amount to the Amazonian carbon flux anomaly. Anomalously large Amazonian carbon flux release is consistent with downregulation of primary productivity during peak negative near-surface water anomaly (October 2015 to March 2016) as diagnosed by solar-induced fluorescence. Finally, we find an unexpected anomalous positive flux to the atmosphere from tropical Africa early in 2016, coincident with substantial CO release.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Subject(s)
Atmosphere/analysis , Carbon Cycle , El Nino-Southern Oscillation , Greenhouse Gases/analysis , Remote Sensing Technology , Tropical Climate , Droughts , Hot Temperature
3.
Phys Rev Lett ; 109(19): 192301, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215375

ABSTRACT

Expansion dynamics at the yoctosecond time scale affect the evolution of the quark gluon plasma (QGP) created in heavy ion collisions. We show how these dynamics are accessible through Hanbury Brown-Twiss (HBT) intensity interferometry of direct photons emitted from the interior of the QGP. A detector placed close to the beam axis is particularly sensitive to early polar momentum anisotropies of the QGP. Observing a modification of the HBT signal at the proposed FoCal detector of the LHC ALICE experiment would allow us to measure the isotropization time of the plasma and could provide first experimental evidence for photon double pulses at the yoctosecond time scale.


Subject(s)
Heavy Ions , Models, Theoretical , Plasma Gases , Elementary Particle Interactions , Nuclear Physics/methods , Photons , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...