Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 85(12): 3451-3464, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35771057

ABSTRACT

A predictive model based on artificial neural networks (ANNs) for modeling primary settling tanks' (PSTs) behavior in wastewater treatment plants was developed in this study. Two separate ANNs were built using input data, raw wastewater characteristics, and operating conditions. The output data from the ANNs consisted of the total suspended solids (TSS) concentration and chemical oxygen demand (COD) as predictions of PSTs' typical effluent parameters. Data from a large-scale wastewater treatment plant was used to illustrate the applicability of the predictive model proposal. The ANNs model showed a high prediction accuracy during the training phase. Comparisons with available empirical and statistical models suggested that the ANNs model provides accurate estimations. Also, the ANNs were tested using new experimental data to verify their reproducibility under actual operating conditions. The predicted values were calculated with satisfactory results, having an average absolute deviation of <20%. The model could be adapted to any large-scale wastewater plant to monitor and control the operation of primary settling tanks, taking advantage of the ANNs' learning capacity.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biological Oxygen Demand Analysis , Neural Networks, Computer , Reproducibility of Results , Waste Disposal, Fluid/methods
2.
Polymers (Basel) ; 13(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641042

ABSTRACT

The development of bio-based materials has been a consequence of the environmental awareness generated over time. The versatility of native starch is a promising starting point for manufacturing environmentally friendly materials. This work aims to compile information on the advancements in research on thermoplastic starch (TPS) nanocomposites after the addition of mainly these four nanofillers: natural montmorillonite (MMT), organically modified montmorillonite (O-MMT), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). The analyzed properties of nanocomposites were mechanical, barrier, optical, and degradability. The most important results were that as the nanofiller increases, the TPS modulus and strength increase; however, the elongation decreases. Furthermore, the barrier properties indicate that that the incorporation of nanofillers confers superior hydrophobicity. However, the optical properties (transparency and luminosity) are mostly reduced, and the color variation is more evident with the addition of these fillers. The biodegradability rate increases with these nanocompounds, as demonstrated by the study of the method of burial in the soil. The results of this compilation show that the compatibility, proper dispersion, and distribution of nanofiller through the TPS matrix are critical factors in overcoming the limitations of starch when extending the applications of these biomaterials. TPS nanocomposites are materials with great potential for improvement. Exploring new sources of starch and natural nano-reinforcement could lead to a genuinely eco-friendly material that can replace traditional polymers in applications such as packaging.

3.
Dalton Trans ; 43(27): 10521-8, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24676400

ABSTRACT

In the first step to obtain an efficient nano-antenna in a bottom-up approach, new hybrid materials were synthesized using a set of layered double hydroxides (LDHs) with basic properties and pure chlorophyll a (Chl a). The stability of the adsorbed monolayer of Chl a was shown to be dependent on the nature and the ratio of the different metal ions present in the LDHs tested. The hybrid materials turned out to be adequate for stabilizing Chl a on Mg/Al LDHs for more than a month under ambient conditions while a limited catalytic decomposition was observed for the Ni/Al LDHs leading to the formation of pheophytin. These changes were followed by namely XRD, DR-UV-vis and fluorescence spectroscopies of the hybrid antennae and of the solutions obtained from their lixiviation with acetone or diethylether. On Mg/Al hydrotalcites the stability of the adsorbed Chl a was equivalent for values of the metal atom ratio ranging from 2 to 4. The latter hybrids should constitute a good basis to form efficient nanoscale light harvesting units following intercalation of selected dyes. This work describes an efficient preparation of Chl a that allows scale-up as well as the obtention of a stable Chl a monolayer on the surface of various LDHs.


Subject(s)
Aluminum/chemistry , Chlorophyll/chemistry , Hydroxides/chemistry , Manganese/chemistry , Nanostructures/chemistry , Spinacia oleracea/chemistry , Adsorption , Aluminum Hydroxide/chemistry , Chlorophyll A , Magnesium Hydroxide/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...