Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 13267, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27827363

ABSTRACT

Obesity-related insulin resistance represents the core component of the metabolic syndrome, promoting glucose intolerance, pancreatic beta cell failure and type 2 diabetes. Efficient and safe insulin sensitization and glucose control remain critical therapeutic aims to prevent diabetic late complications Here, we identify transforming growth factor beta-like stimulated clone (TSC) 22 D4 as a molecular determinant of insulin signalling and glucose handling. Hepatic TSC22D4 inhibition both prevents and reverses hyperglycaemia, glucose intolerance and insulin resistance in diabetes mouse models. TSC22D4 exerts its effects on systemic glucose homeostasis-at least in part-through the direct transcriptional regulation of the small secretory protein lipocalin 13 (LCN13). Human diabetic patients display elevated hepatic TSC22D4 expression, which correlates with decreased insulin sensitivity, hyperglycaemia and LCN13 serum levels. Our results establish TSC22D4 as a checkpoint in systemic glucose metabolism in both mice and humans, and propose TSC22D4 inhibition as an insulin sensitizing option in diabetes therapy.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Hyperglycemia/genetics , Insulin Resistance/genetics , Transcription Factors/genetics , Animals , Cell Line , Diabetes Mellitus, Type 2/blood , Female , Gene Expression Regulation , Humans , Hyperglycemia/blood , Lipocalins/genetics , Lipocalins/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/metabolism
2.
Mol Oncol ; 10(8): 1232-44, 2016 10.
Article in English | MEDLINE | ID: mdl-27324824

ABSTRACT

Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are not commonly used in clinical practice for treatment of B-cell lymphomas, although a subset of patients with refractory or relapsed B-cell lymphoma achieved partial or complete remissions. Therefore, the purpose of this study was to identify molecular features that predict the response of B-cell lymphomas to SAHA treatment. We designed an integrative approach combining drug efficacy testing with exome and captured target analysis (DETECT). In this study, we tested SAHA sensitivity in 26 B-cell lymphoma cell lines and determined SAHA-interacting proteins in SAHA resistant and sensitive cell lines employing a SAHA capture compound (CC) and mass spectrometry (CCMS). In addition, we performed exome mutation analysis. Candidate validation was done by expression analysis and knock-out experiments. An integrated network analysis revealed that the Src tyrosine kinase Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR) is associated with SAHA resistance. FGR was specifically captured by the SAHA-CC in resistant cells. In line with this observation, we found that FGR expression was significantly higher in SAHA resistant cell lines. As functional proof, CRISPR/Cas9 mediated FGR knock-out in resistant cells increased SAHA sensitivity. In silico analysis of B-cell lymphoma samples (n = 1200) showed a wide range of FGR expression indicating that FGR expression might help to stratify patients, which clinically benefit from SAHA therapy. In conclusion, our comprehensive analysis of SAHA-interacting proteins highlights FGR as a factor involved in SAHA resistance in B-cell lymphoma.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Lymphoma, B-Cell/pathology , Proto-Oncogene Proteins/metabolism , src-Family Kinases/metabolism , Cell Line, Tumor , Gene Knockout Techniques , Gene Regulatory Networks/drug effects , Humans , Mass Spectrometry , Mutation/genetics , Reproducibility of Results , Vorinostat
3.
EMBO J ; 34(3): 344-60, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25510864

ABSTRACT

In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction.


Subject(s)
Glucocorticoids/metabolism , Lipid Metabolism , Liver/metabolism , MicroRNAs/metabolism , Obesity/metabolism , Animals , Cell Line , Female , Gene Silencing , Glucocorticoids/genetics , Humans , Lipoproteins, VLDL/genetics , Lipoproteins, VLDL/metabolism , Liver/pathology , Male , Mice , Mice, Obese , MicroRNAs/genetics , Obesity/genetics , Triglycerides/genetics , Triglycerides/metabolism
4.
Cell Metab ; 17(4): 575-85, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23499424

ABSTRACT

Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and, when placed on a high-fat-diet, show aggravated adiposity, glucose intolerance, and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFAs). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes might thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders.


Subject(s)
Adipose Tissue, White/metabolism , Lipid Mobilization/physiology , Receptors, Cytoplasmic and Nuclear/metabolism , 3T3-L1 Cells , Animals , Cyclic AMP/metabolism , Diet, High-Fat , Fatty Acids, Nonesterified/blood , Humans , Insulin Resistance , Lipolysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/metabolism , Obesity/pathology , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, Adrenergic/genetics , Receptors, Adrenergic/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction
5.
Haematologica ; 98(2): 247-54, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22899583

ABSTRACT

A characteristic feature of anaplastic large cell lymphoma is the significant repression of the T-cell expression program despite its T-cell origin. The reasons for this down-regulation of T-cell phenotype are still unknown. To elucidate whether epigenetic mechanisms are responsible for the loss of the T-cell phenotype, we treated anaplastic large cell lymphoma and T-cell lymphoma/leukemia cell lines (n=4, each) with epigenetic modifiers to evoke DNA demethylation and histone acetylation. Global gene expression data from treated and untreated cell lines were generated and selected, and differentially expressed genes were evaluated by real-time reverse transcriptase polymerase chain reaction and western blot analysis. Additionally, histone H3 lysine 27 trimethylation was analyzed by chromatin immunoprecipitation. Combined DNA demethylation and histone acetylation of anaplastic large cell lymphoma cells was not able to reconstitute their T-cell phenotype. Instead, the same treatment induced in T cells: (i) an up-regulation of anaplastic large cell lymphoma-characteristic genes (e.g. ID2, LGALS1, c-JUN), and (ii) an almost complete extinction of their T-cell phenotype including CD3, LCK and ZAP70. In addition, suppressive trimethylation of histone H3 lysine 27 of important T-cell transcription factor genes (GATA3, LEF1, TCF1) was present in anaplastic large cell lymphoma cells, which is in line with their absence in primary tumor specimens as demonstrated by immunohistochemistry. Our data suggest that epigenetically activated suppressors (e.g. ID2) contribute to the down-regulation of the T-cell expression program in anaplastic large cell lymphoma, which is maintained by trimethylation of histone H3 lysine 27.


Subject(s)
DNA Methylation , Histones/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Phenotype , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Line, Tumor , Cluster Analysis , Decitabine , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Histones/genetics , Humans , Hydroxamic Acids/pharmacology , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Lymphoma, Large-Cell, Anaplastic/diagnosis , Promoter Regions, Genetic , T-Lymphocytes/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism
6.
PLoS One ; 6(11): e26837, 2011.
Article in English | MEDLINE | ID: mdl-22102868

ABSTRACT

BACKGROUND: MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. METHODOLOGY/PRINCIPAL FINDINGS: ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. CONCLUSION/SIGNIFICANCE: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology.


Subject(s)
Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Binding Sites , Biomarkers, Tumor/genetics , Chromatin Immunoprecipitation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , RNA, Small Interfering/genetics , Tumor Cells, Cultured
7.
Haematologica ; 96(6): 863-70, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21393330

ABSTRACT

BACKGROUND: Epigenetic changes are involved in the extinction of the B-cell gene expression program of classical Hodgkin's lymphoma. However, little is known regarding epigenetic similarities between cells of classical Hodgkin's lymphoma and plasma cell myeloma, both of which share extinction of the gene expression program of mature B cells. DESIGN AND METHODS: Global histone H3 acetylation patterns were determined in cell lines derived from classical Hodgkin's lymphoma, plasma cell myeloma and B-cell lymphoma by chromatin immunoprecipitation and subsequent hybridization onto promoter tiling arrays. H3K27 trimethylation was analyzed by chromatin immunoprecipitation and real-time DNA polymerase chain reaction for selected genes. Epigenetic modifications were compared to gene expression data. RESULTS: Characteristic B-cell genes were hypoacetylated in classical Hodgkin's lymphoma and plasma cell myeloma cell lines as demonstrated by comparison of their histone H3 acetylation patterns to those of B-cell lines. However, the number of genes jointly hyperacetylated and expressed in classical Hodgkin' lymphoma and plasma cell myeloma cell lines, such as IRF4/MUM1 and RYBP, is limited. Moreover, H3K27 trimethylation for selected characteristic B-cell genes revealed that this additional epigenetic silencing is much more prevalent in classical Hodgkin's lymphoma than in plasma cell myeloma. CONCLUSIONS: Our epigenetic data support the view that classical Hodgkin's lymphoma is characterized by abortive plasma cell differentiation with a down-regulation of characteristic B-cell genes but without activation of most genes typical of plasma cells.


Subject(s)
Cell Differentiation , Epigenesis, Genetic , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Plasma Cells/cytology , Plasma Cells/pathology , Acetylation/drug effects , Cell Line, Tumor , DNA Methylation/drug effects , Deoxycytidine/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Hydroxamic Acids/pharmacology , Polycomb-Group Proteins , Promoter Regions, Genetic/genetics , Repressor Proteins/metabolism
8.
Mol Cell Endocrinol ; 332(1-2): 21-31, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-21112373

ABSTRACT

After binding to their cognate DNA-binding partner, transcriptional co-factors exert their function through the recruitment of enzymatic, chromatin-modifying activities. In turn, the assembly of co-factor-associated multi-protein complexes efficiently impacts target gene expression. Recent advances have established transcriptional co-factor complexes as a critical regulatory level in energy homeostasis and aberrant co-factor activity has been linked to the pathogenesis of severe metabolic disorders including obesity, type 2 diabetes and other components of the Metabolic Syndrome. The liver represents the key peripheral organ for the maintenance of systemic energy homeostasis, and aberrations in hepatic glucose and lipid metabolism have been causally linked to the manifestation of disorders associated with the Metabolic Syndrome. Therefore, this review focuses on the role of distinct classes of transcriptional co-factors in hepatic glucose and lipid homeostasis, emphasizing pathway-specific functions of these co-factors under physiological and pathophysiological conditions.


Subject(s)
Energy Metabolism , Liver/metabolism , Nuclear Proteins/metabolism , Transcription, Genetic , Diabetes Mellitus, Type 2/metabolism , Homeostasis , Humans , Lipid Metabolism , Liver/physiology , Metabolic Syndrome/metabolism , Nuclear Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...