Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Sci Rep ; 14(1): 15408, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965271

ABSTRACT

Chemosensory impairment is an outstanding symptom of SARS-CoV-2 infections. We hypothesized that measured sensory impairments are accompanied by transcriptomic changes in the foliate papillae area of the tongue. Hospital personnel with known SARS-CoV-2 immunoglobulin G (IgG) status completed questionnaires on sensory perception (n = 158). A subcohort of n = 141 participated in forced choice taste tests, and n = 43 participants consented to donate tongue swabs of the foliate papillae area for whole transcriptome analysis. The study included four groups of participants differing in IgG levels (≥ 10 AU/mL = IgG+; < 10 AU/mL = IgG-) and self-reported sensory impairment (SSI±). IgG+ subjects not detecting metallic taste had higher IgG+ levels than IgG+ participants detecting iron gluconate (p = 0.03). Smell perception was the most impaired biological process in the transcriptome data from IgG+/SSI+ participants subjected to gene ontology enrichment. IgG+/SSI+ subjects demonstrated lower expression levels of 166 olfactory receptors (OR) and 9 taste associated receptors (TAS) of which OR1A2, OR2J2, OR1A1, OR5K1 and OR1G1, as well as TAS2R7 are linked to metallic perception. The question raised by this study is whether odorant receptors on the tongue (i) might play a role in metal sensation, and (ii) are potential targets for virus-initiated sensory impairments, which needs to be investigated in future functional studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Tongue , Transcriptome , Humans , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , Male , Female , Adult , Middle Aged , Tongue/metabolism , Tongue/virology , Tongue/pathology , Immunoglobulin G , Metals/metabolism , Taste Buds/metabolism , Taste Perception/genetics , Taste , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Olfactory Perception
2.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915718

ABSTRACT

Background: The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results: Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion: We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.

3.
J Agric Food Chem ; 72(26): 14830-14843, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888424

ABSTRACT

Beyond the key bitter compound kaempferol 3-O-(2‴-O-sinapoyl-ß-d-sophoroside) previously described in the literature (1), eight further bitter and astringent-tasting kaempferol glucosides (2-9) have been identified in rapeseed protein isolates (Brassica napus L.). The bitterness and astringency of these taste-active substances have been described with taste threshold concentrations ranging from 3.3 to 531.7 and 0.3 to 66.4 µmol/L, respectively, as determined by human sensory experiments. In this study, the impact of 1 and kaempferol 3-O-ß-d-glucopyranoside (8) on TAS2R-linked proton secretion by HGT-1 cells was analyzed by quantification of the intracellular proton index. mRNA levels of bitter receptors TAS2R3, 4, 5, 13, 30, 31, 39, 40, 43, 45, 46, 50 and TAS2R8 were increased after treatment with compounds 1 and 8. Using quantitative UHPLC-MS/MSMRM measurements, the concentrations of 1-9 were determined in rapeseed/canola seeds and their corresponding protein isolates. Depending on the sample material, compounds 1, 3, and 5-9 exceeded dose over threshold (DoT) factors above one for both bitterness and astringency in selected protein isolates. In addition, an increase in the key bitter compound 1 during industrial protein production (apart from enrichment) was observed, allowing the identification of the potential precursor of 1 to be kaempferol 3-O-(2‴-O-sinapoyl-ß-d-sophoroside)-7-O-ß-d-glucopyranoside (3). These results may contribute to the production of less bitter and astringent rapeseed protein isolates through the optimization of breeding and postharvest downstream processing.


Subject(s)
Brassica napus , Glycosides , Kaempferols , Plant Proteins , Receptors, G-Protein-Coupled , Taste , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Brassica napus/chemistry , Brassica napus/metabolism , Brassica napus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Glycosides/chemistry , Plant Extracts/chemistry , Seeds/chemistry , Seeds/metabolism , Brassica rapa/chemistry , Brassica rapa/metabolism
4.
J Agric Food Chem ; 72(26): 14521-14529, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38906535

ABSTRACT

Chemosensory membrane proteins such as G-protein-coupled receptors (GPCRs) drive flavor perception of food formulations. To achieve this, a detailed understanding of the structure and function of these membrane proteins is needed, which is often limited by the extraction and purification methods involved. The proposed nanodisc methodology helps overcome some of these existing challenges such as protein stability and solubilization along with their reconstitution from a native cell-membrane environment. Being well-established in structural biology procedures, nanodiscs offer this elegant solution by using, e.g., a membrane scaffold protein (MSP) or styrene-maleic acid (SMA) polymer, which interacts directly with the cell membrane during protein reconstitution. Such derived proteins retain their biophysical properties without compromising the membrane architecture. Here, we seek to show that these lipidic systems can be explored for insights with a focus on chemosensory membrane protein morphology and structure, conformational dynamics of protein-ligand interactions, and binding kinetics to answer pending questions in flavor research. Additionally, the compatibility of nanodiscs across varied (labeled or label-free) techniques offers significant leverage, which has been highlighted here.


Subject(s)
Membrane Proteins , Membrane Proteins/chemistry , Nanostructures/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Flavoring Agents/chemistry , Humans
5.
Heliyon ; 10(9): e30329, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707340

ABSTRACT

Both high glucose intake with a high-fat meal and inhibition of dipeptidyl peptidase-4 (DPP4) have been associated with plasma lipid-lowering effects, but mechanistic understanding linking glucose and fat absorption is lacking. We here hypothesized that glucose ameliorates intestinal fatty acid uptake via a pathway involving DPP4. A concentration of 50 mM glucose reduced mean DPP4 activity in differentiated Caco-2 enterocytes by 42.5 % and fatty acid uptake by 66.0 % via nutrient sensing by the sweet taste receptor subunit TAS1R3 and glucose transporter GLUT-2. No effect of the DPP4 substrates GLP-1 and GIP or of the cellular energy status on the reduced uptake of fatty acids was seen, but a direct interaction between DPP4 and fatty acid transporters is suggested. Conclusively we identified DPP4 as a regulator of fatty acid absorption in Caco-2 enterocytes that mediates the inhibition of intestinal fatty acid uptake by glucose via an interplay of GLUT-2 and TAS1R3.

6.
Food Chem ; 448: 139157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569411

ABSTRACT

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Subject(s)
Helicobacter pylori , Interleukin-17 , Plant Proteins , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Taste , Digestion , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Helicobacter Infections/immunology , Cell Line
7.
Nat Food ; 5(4): 281-287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605131

ABSTRACT

Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.


Subject(s)
Microscopy, Atomic Force , Mouth , Taste Perception , Humans , Taste/physiology , Taste Perception/physiology
8.
Curr Dev Nutr ; 8(Suppl 1): 102027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476725

ABSTRACT

Populations in low- and middle-income countries (LMIC) typically consume less than the recommended daily amount of protein. Alternative protein (AP) sources could help combat malnutrition, but this requires careful consideration of elements needed to further establish AP products in LMIC. Key considerations include technological, nutritional, safety, social, and economic challenges. This perspective analyzes these considerations in achieving dietary diversity in LMIC, using a combination of traditional and novel protein sources with high nutritional value, namely, soy, mycoprotein, and cultivated meat. Technological approaches to modulate the technofunctionality and bitter off-tastes of plant-sourced proteins facilitate processing and ensure consumer acceptance. Economic considerations for inputs, infrastructure for production, and transportation represent key elements to scale up AP. Dietary diversification is indispensable and LMIC cannot rely on plant proteins alone to provide adequate protein intake sustainably. Investments in infrastructure and innovation are urgently needed to offer diverse sources of protein in LMIC.

9.
J Agric Food Chem ; 72(9): 4906-4917, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38378185

ABSTRACT

Gastric parietal cells secrete chloride ions and protons to form hydrochloric acid. Besides endogenous stimulants, e.g., acetylcholine, bitter-tasting food constituents, e.g., caffeine, induce proton secretion via interaction with bitter taste receptors (TAS2Rs), leading to increased cytosolic Ca2+ and cAMP concentrations. We hypothesized TAS2R activation by bitter tastants to result in proton secretion via cellular Na+ influx mediated by transient receptor potential channels (TRP) M4 and M5 in immortalized human parietal HGT-1 cells. Using the food-derived TAS2R agonists caffeine and l-arginine, we demonstrate both bitter compounds to induce a TRPM4/M5-mediated Na+ influx, with EC50 values of 0.65 and 10.38 mM, respectively, that stimulates cellular proton secretion. Functional involvement of TAS2Rs in the caffeine-evoked effect was demonstrated by means of the TAS2R antagonist homoeriodictyol, and stably CRISPR-Cas9-edited TAS2R43ko cells. Building on previous results, these data further support the suitability of HGT-1 cells as a surrogate cell model for taste cells. In addition, TRPM4/M5 mediated a Na+ influx after stimulating HGT-1 cells with the acetylcholine analogue carbachol, indicating an interaction of the digestion-associated cholinergic pathway with a taste-signaling pathway in parietal cells.


Subject(s)
Parietal Cells, Gastric , TRPM Cation Channels , Humans , Parietal Cells, Gastric/metabolism , Taste , Caffeine/pharmacology , Caffeine/metabolism , Protons , Sodium/metabolism , Acetylcholine/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
10.
Front Physiol ; 14: 1200119, 2023.
Article in English | MEDLINE | ID: mdl-37781224

ABSTRACT

Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.

11.
ACS Omega ; 8(31): 28543-28552, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576644

ABSTRACT

Inhibitors of the tyrosine kinase (TK) activity of the epidermal growth factor receptor (EGFR) are routinely used in cancer therapy. However, there is a need to discover a new TK inhibitor. This study evaluated extracts from Brucea javanica and its components for their potential as novel EGFR-TK inhibitors. The cytotoxic effect of a g aqueous extract and its fractions was assessed by MTT assays with A549 lung cancer cells. The two fractions with the highest cytotoxicity were analyzed by LC/MS and 1H NMR. Brusatol was identified as the main constituent of these fractions, and its cytotoxic and pro-apoptotic activities were confirmed in A549 cells. To elucidate the inhibitory activity of brusatol against EGFR-TK, a specific ADP-GloTM kinase assay was used. In this assay, the IC50 value for EGFR-TK inhibition was 333.1 nM. Molecular dynamic simulations and docking experiments were performed to identify the binding pocket of brusatol to be located in the intracellular TK-domain of EGFR. This study demonstrates that brusatol inhibits EGFR-TK and therefore harbors a potential as a new therapeutic drug for the therapy of EGFR-depending cancers.

12.
Mol Nutr Food Res ; 67(16): e2200601, 2023 08.
Article in English | MEDLINE | ID: mdl-37173826

ABSTRACT

SCOPE: Red meat, a staple food of Western diets, can also induce IgE-mediated allergic reactions. Yet, apart from the heat-labile protein serum albumin and the carbohydrate α-Gal, the molecules causing allergic reactions to red meat remain unknown. METHODS AND RESULTS: IgE reactivity profiles of beef-sensitized individuals are analyzed by IgE-immunoblotting with protein extracts from raw and cooked beef. Two IgE-reactive proteins are identified by peptide mass fingerprinting as myosinlight chain 1 (MYL1) and myosin light chain 3 (MYL3) in cooked beef extract and are designated Bos d 13 isoallergens. MYL1 and MYL3 are produced recombinantly in Escherichia coli. ELISAs proved their IgE reactivity and circular dichroism analysis showed that they represent folded molecules with remarkable thermal stability. In vitro gastrointestinal digestion experiments showed the higher stability of rMYL1 as compared to rMYL3. Exposure of a monolayer of Caco-2 cells to rMYL1 indicated that the molecule is able to cross intestinal epithelial cells without disturbing the integrity of the tight junctions, suggesting the sensitizing capacity of MYL1. CONCLUSION: MYLs are identified as novel heat-stable bovine meat allergens.


Subject(s)
Allergens , Food Hypersensitivity , Humans , Cattle , Animals , Food Hypersensitivity/etiology , Hot Temperature , Caco-2 Cells , Immunoglobulin E , Meat/analysis , Cross Reactions
13.
J Agric Food Chem ; 71(13): 5314-5325, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36943188

ABSTRACT

Human gingival fibroblast cells (HGF-1 cells) present an important cell model to investigate the gingiva's response to inflammatory stimuli such as lipopolysaccharides from Porphyromonas gingivalis (Pg-LPS). Recently, we demonstrated trans-resveratrol to repress the Pg-LPS evoked release of the pro-inflammatory cytokine interleukin-6 (IL-6) via involvement of bitter taste sensing receptor TAS2R50 in HGF-1 cells. Since HGF-1 cells express most of the known 25 TAS2Rs, we hypothesized an association between a compound's bitter taste threshold and its repressing effect on the Pg-LPS evoked IL-6 release by HGF-1 cells. To verify our hypothesis, 11 compounds were selected from the chemical bitter space and subjected to the HGF-1 cell assay, spanning a concentration range between 0.1 µM and 50 mM. In the first set of experiments, the specific role of TAS2R50 was excluded by results from structurally diverse TAS2R agonists and antagonists and by means of a molecular docking approach. In the second set of experiments, the HGF-1 cell response was used to establish a linear association between a compound's effective concentration to repress the Pg-LPS evoked IL-6 release by 25% and its bitter taste threshold concentration published in the literature. The Pearson correlation coefficient revealed for this linear association was R2 = 0.60 (p < 0.01), exceeding respective data for the test compounds from a well-established native cell model, the HGT-1 cells, with R2 = 0.153 (p = 0.263). In conclusion, we provide a predictive model for bitter tasting compounds with a potential to act as anti-inflammatory substances.


Subject(s)
Taste Threshold , Taste , Humans , Interleukin-6/genetics , Interleukin-6/pharmacology , Gingiva , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Porphyromonas gingivalis , Fibroblasts , Receptors, G-Protein-Coupled/genetics
14.
Mol Metab ; 72: 101711, 2023 06.
Article in English | MEDLINE | ID: mdl-36958422

ABSTRACT

PURPOSE: Heart diseases are the leading cause of death worldwide. Metabolic interventions via ketogenic diets (KDs) have been used for decades to treat epilepsy, and more recently, also diabetes and obesity, as common comorbidities of heart diseases. However, recent reports linked KDs, based on long-chain triglycerides (LCTs), to cardiac fibrosis and a reduction of heart function in rodents. As intervention using medium-chain triglycerides (MCTs) was recently shown to be beneficial in murine cardiac reperfusion injury, the question arises as to what extent the fatty acid (FA)-composition in a KD alters molecular markers of FA-oxidation (FAO) and modulates cardiac fibrotic outcome. METHODS: The effects of LCT-KD as well as an LCT/MCT mix (8:1 ketogenic ratio) on cardiac tissue integrity and the plasma metabolome were assessed in adult male C57/BL6NRJ mice after eight weeks on the respective diet. RESULTS: Both KDs resulted in increased amount of collagen fibers and cardiac tissue was immunologically indistinguishable between groups. MCT supplementation resulted in i) profound changes in plasma metabolome, ii) reduced hydroxymethylglutaryl-CoA synthase upregulation, and mitofusin 2 downregulation, iii) abrogation of LCT-induced mitochondrial enlargement, and iv) enhanced FAO profile. Contrary to literature, mitochondrial biogenesis was unaffected by KDs. We propose that the observed tissue remodeling is caused by the accumulation of 4-hydroxy-2-nonenal protein adducts, despite an inconspicuous nuclear factor (erythroid-derived 2)-like 2 pathway. CONCLUSION: We conclude that regardless of the generally favorable effects of MCTs, they cannot inhibit 4-hydroxy-2-nonenal adduct formation and fibrotic tissue formation in this setting. Furthermore, we support the burgeoning concern about the effect of KDs on the cardiac safety profile.


Subject(s)
Diet, Ketogenic , Heart Diseases , Male , Mice , Animals , Diet, Ketogenic/adverse effects , Diet, Ketogenic/methods , Triglycerides/metabolism , Fatty Acids , Fibrosis
15.
ACS Omega ; 8(2): 2213-2226, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687051

ABSTRACT

The secretion of extracellular vesicles and particles (EVPs) is an important mechanism of cellular communication. In this work, we demonstrate a functional role of EVPs in mechanisms regulating gastric acid secretion. HGT-1 cells were used as a model system to assess proton secretion. First, in order to prove EVP secretion by HGT-1 cells, EVPs were isolated by size exclusion chromatography and characterized by nanoparticle tracking analysis, Western blot, and cryo transmission electron microscopy. For examination of the potential role of EVPs in proton secretion, HGT-1 cells were treated with pharmacological EV-inhibitors, resulting in a reduction of histamine-induced proton secretion. To demonstrate the functional role of EVPs in the mechanism of proton secretion, EVP-conditioned supernatant was collected after stimulation of HGT-1 cells with histamine, fractionated, and subjected to an activity screening. The results revealed constituents of the HGT-1-derived secretome with an MW of >100 kDa (including EVPs) to modulate proton secretion, while smaller constituents had no effect. Finally, a dose-dependent modulatory effect on proton secretion of HGT-1 cells was demonstrated by isolated HGT-1-derived EVPs. Hence, this study presents first results on the potential function of EVPs as a previously undiscovered mechanism of regulation of gastric acid secretion by parietal cells.

16.
Mol Nutr Food Res ; 67(4): e2200434, 2023 02.
Article in English | MEDLINE | ID: mdl-36564924

ABSTRACT

SCOPE: Clarifying the function of sensory active TRP (transient receptor potential) channels in non-sensory tissue is of growing interest, especially with regard to food ingredients in nutritionally relevant concentrations. The study hypothesizes the TRPV1 agonist [6]-gingerol to facilitate cellular immune responses of primary human neutrophils, after treatment with 50 nM, a concentration that can be reached in the circulation after habitual dietary intake. METHODS AND RESULTS: qRT-PCR analyses reveal a high abundancy of TRP channel RNA expression in the types of primary leukocytes investigated, namely neutrophils, monocytes, NK cells, T cells, and B cells. Incubation of neutrophils with 50 nM of the known TRPV1 ligand [6]-gingerol led to increased surface expression of CD11b, CD66b, and the fMLF receptor FPR1, as shown by flow cytometry. Upon subsequent stimulation with fMLF, the neutrophils display an about 30% (p < 0.05) increase in CXCL8 secretion as well as in ROS production. Pharmacological inhibition of TRPV1 by trans-tert-butylcyclohexanol abolishes the [6]-gingerol induced effects. CONCLUSIONS: The TRPV1 channel is functionally expressed in human neutrophils. Activation of the channel with [6]-gingerol as a food-derived ligand in nutritionally relevant concentrations leads to an enhanced responsiveness in the cells towards activating stimuli, thereby facilitating a canonical cellular immune response in human neutrophils.


Subject(s)
Neutrophils , TRPV Cation Channels , Humans , Reactive Oxygen Species/metabolism , TRPV Cation Channels/genetics , Neutrophils/metabolism , Ligands
17.
J Agric Food Chem ; 70(48): 15134-15142, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36399543

ABSTRACT

Pyrazines are among the most important compound class conveying the odor impressions "roasty", "nutty", and "earthy". They are formed by the Maillard reaction and occur ubiquitously in heated foods. The excretion of metabolites of the key flavor odorant 2,3,5-trimethylpyrazine, abundant in the volatile fraction of roasted coffee, was investigated. Based on literature suggestions, putative phase 1 and phase 2 metabolites were synthesized, characterized by nuclear magnetic resonance and mass spectroscopy data and used as standards for targeted, quantitative analysis of coffee drinkers' urine using stable-isotope-dilution-ultrahigh-performance liquid chromatography tandem mass spectroscopy (SIDA-UHPLC-MS/MS). The analysis of spot urine samples from a coffee intervention study revealed 3,6-dimethylpyrazine-2-carboxylic acid, 3,5-dimethylpyrazine-2-carboxylic acid, and 5,6-dimethylpyrazine-2-carboxylic acid were quantitatively dominating metabolites. Only negligible traces of pyrazinemethanols (3,6-dimethyl-2-pyrazinemethanol and 3,5,6-trimethylpyrazine-2-ol), glucuronides ((3,6-dimethylpyrazine-2-yl-)methyl-O-ß-D-glucuronide and (3,5-dimethylpyrazine-2-yl-)methyl-O-ß-D-glucuronide), and sulfates ((3,6-dimethylpyrazine-2-yl-)methyl-sulfate and (3,5-dimethylpyrazine-2-yl-)methyl-sulfate) were detected.


Subject(s)
Glucuronides , Tandem Mass Spectrometry , Humans
18.
FASEB J ; 36(11): e22534, 2022 11.
Article in English | MEDLINE | ID: mdl-36183361

ABSTRACT

The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.


Subject(s)
Chlorides , Cystic Fibrosis Transmembrane Conductance Regulator , Animals , Antiporters/metabolism , Bicarbonates/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Protons , Sulfate Transporters/genetics , Sulfate Transporters/metabolism
19.
J Agric Food Chem ; 70(37): 11591-11602, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36054030

ABSTRACT

Eating satiating, protein-rich foods is one of the key aspects of modern diet, although a bitter off-taste often limits the application of some proteins and protein hydrolysates, especially in processed foods. Previous studies of our group demonstrated that bitter-tasting food constituents, such as caffeine, stimulate mechanisms of gastric acid secretion as a signal of gastric satiation and a key process of gastric protein digestion via activation of bitter taste receptors (TAS2Rs). Here, we tried to elucidate whether dietary non-bitter-tasting casein is intra-gastrically degraded into bitter peptides that stimulate mechanisms of gastric acid secretion in physiologically achievable concentrations. An in vitro model of gastric digestion was verified by casein-fed pigs, and the peptides resulting from gastric digestion were identified by liquid chromatography-time-of-flight-mass spectrometry. The bitterness of five selected casein-derived peptides was validated by sensory analyses and by an in vitro screening approach based on human gastric parietal cells (HGT-1). For three of these peptides (YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV), an upregulation of gene expression of TAS2R16 and TAS2R38 was observed. The functional involvement of these TAS2Rs was verified by siRNA knock-down (kd) experiments in HGT-1 cells. This resulted in a reduction of the mean proton secretion promoted by the peptides by up to 86.3 ± 9.9% for TAS2R16kd (p < 0.0001) cells and by up to 62.8 ± 7.0% for TAS2R38kd (p < 0.0001) cells compared with mock-transfected cells.


Subject(s)
Caseins , Taste , Animals , Caffeine/metabolism , Caseins/metabolism , Digestion , Gastric Acid/metabolism , Humans , Peptides/metabolism , Protein Hydrolysates/metabolism , Protons , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/metabolism , Swine , Taste/genetics
20.
Front Nutr ; 9: 984715, 2022.
Article in English | MEDLINE | ID: mdl-36118778

ABSTRACT

Regular consumption of hen eggs can help to prevent deficiencies of essential nutrients, such as essential amino acids, vitamin A and E or trace elements zinc and selenium, for vulnerable populations. This study focused on assessing the nutritional value of spray-dried eggs, favored by their manufacturability, storability and ease of addition to (complementary) foods. Using a wide range of analytical techniques, we recorded and compared the nutrient profiles of commercially produced pasteurized whole eggs and their respective powder samples spray-dried at 160°C. Important nutrients that were not significantly affected by spray-drying include total fat content, several amino acids, α- and δ-tocopherol, lutein, zeaxanthin, essential trace elements and cobalamin. The most notable mean losses were found for unsaturated fatty acids, e.g., linoleic (by -38.7%, from 4.11 ± 0.45 to 2.52 ± 0.75 g/100 g DM) and linolenic acid (by -60.8%, from 0.76 ± 0.05 to 0.30 ± 0.04 g/100 g DM). Despite recording significant retinol losses in two out of three batches, the overall low reduction of -14% recommend spray-dried eggs as a valuable source of vitamin A. A daily intake of spray-dried egg powder corresponding to one medium sized egg meets dietary reference values for children, e.g., by 100% for vitamin E, by 24% for retinol, by 61% for selenium and by 22% for zinc. In conclusion, even though a dry weight comparison favors supplementation with pasteurized whole eggs, our results demonstrate a high potential for spray-dried eggs as nutritional supplement. However, the spray-drying process should be optimized toward higher retentions of unsaturated fatty acids and retinol.

SELECTION OF CITATIONS
SEARCH DETAIL
...